首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23397篇
  免费   247篇
  国内免费   137篇
测绘学   371篇
大气科学   1232篇
地球物理   4445篇
地质学   9238篇
海洋学   2282篇
天文学   5301篇
综合类   41篇
自然地理   871篇
  2022年   267篇
  2021年   435篇
  2020年   401篇
  2019年   468篇
  2018年   959篇
  2017年   871篇
  2016年   901篇
  2015年   376篇
  2014年   788篇
  2013年   1317篇
  2012年   926篇
  2011年   1108篇
  2010年   1075篇
  2009年   1229篇
  2008年   1058篇
  2007年   1227篇
  2006年   1081篇
  2005年   584篇
  2004年   545篇
  2003年   557篇
  2002年   569篇
  2001年   520篇
  2000年   416篇
  1999年   340篇
  1998年   329篇
  1997年   333篇
  1996年   260篇
  1995年   269篇
  1994年   239篇
  1993年   185篇
  1992年   215篇
  1991年   189篇
  1990年   202篇
  1989年   190篇
  1988年   161篇
  1987年   188篇
  1986年   174篇
  1985年   215篇
  1984年   204篇
  1983年   205篇
  1982年   195篇
  1981年   175篇
  1980年   167篇
  1979年   188篇
  1978年   165篇
  1977年   145篇
  1976年   137篇
  1975年   142篇
  1974年   127篇
  1973年   174篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
101.
102.
103.
104.
We present the results of the preliminary study of the comet Hale-Bopp spectrum obtained April 17, 1997 by K. Churyumov and F. Mussayev with the help of the 1-meter Zeiss reflector and the echelle spectrometer (spectral resolutionλ/Δ λ ≈ 50000), CCD and the long slit, oriented along the radius-vector(“Sun-comet direction”). Energy distributions for three selected regions including the C3, C2 (0-0) and CN(Δ ν = 0) molecules emissions of the comet Hale-Bopp spectrum were built. The rotational lines of the CN(Δ ν = 0) band were identified. The nature of the high emission peak near λ 4020 Å in the C3 band is discussed. The presence of the cometary continuum of the nonsolar origin is assumed.  相似文献   
105.
The physical meaning of the terms of the potential and kinetic energy expressions, expanded by means of the density variation function for a nonuniform self-gravitating sphere, is discussed. The terms of the expansions represent the energy and the moment of inertia of the uniform sphere, the energy and the moment of inertia of the nonuniformities interacting with the uniform sphere, and the energy of the nonuniformities interacting with each other. It follows from the physical meaning of the above components of the energy structure, and also from the observational fact of the expansion of the Universe that the phase transition, notably, fusion of particles and nuclei and condensation of liquid and solid phases of the expanded matter accompanied by release of energy, must be the physical cause of initial thermal and gravitational instability of the matter. The released kinetic energy being constrained by the general motion of the expansion, develops regional and local turbulent (cyclonic) motion of the matter, which should be the second physical effect responsible for the creation of celestial bodies and their rotation.  相似文献   
106.
107.
108.
The inflationary unvierse model predicts the density parameter 0 to be 1.0 with the cosmological constant 0 usually taken to be zero, whereas observational estimates give 00.2 and 010-57 cm–2. It was found, however, that the observed variation of angular diameter with redshift for extragalactic radio sources could be interpreted in terms of a low density universe with linear size evolution of the sources for either an inflationary model with 0 or an open model with =0.  相似文献   
109.
Observations made by the differential method in the H line have revealed longperiod (on a timescale of 40 to 80 min) line-of-sight velocity oscillations which increase in amplitude with distance from the centre to the solar limb and, as we believe, give rise to prominence oscillations. As a test, we present some results of simultaneous observations at the photospheric level where such periods are absent.Oscillatory processes in the solar chromosphere have been studied by many authors. Previous efforts in this vein led to the detection of shortperiod oscillations in both the mass velocities and radiation intensity (Deubner, 1981). The oscillation periods obtained do not, normally, exceed 10–20 min (Dubov, 1978). More recently, Merkulenko and Mishina (1985), using filter observations in the H line, found intensity fluctuations with periods not exceeding 78 min. However, the observing technique they used does not exclude the possibility that those fluctuations were due to the influence of the Earth's atmosphere. It is also interesting to note that in spectra obtained by Merkulenko and Mishina (1985), the amplitude of the 3 min oscillations is anomalously small and the 5 min period is altogether absent, while the majority of other papers treating the brightness oscillations in the chromosphere, do not report such periods in the first place. So far, we are not aware of any other evidence concerning the longperiod velocity oscillations in the chromosphere on a timescale of 40–80 min.Longperiod oscillations in prominences (filaments) in the range from 40 to 80 min, as found by Bashkirtsev et al. (1983) and Bashkirtsev and Mashnich (1984, 1985), indicate that such oscillations can exist in both the chromosphere and the corona (Hollweg et al., 1982).In this note we report on experimental evidence for the existence of longperiod oscillations of mass velocity in the solar chromosphere.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号