One of the major problems of heavy oil thermal recovery is the inadequacy of understanding the multi-field coupling displacement mechanisms to improve the oil production and extraction ratio. From the perspective of “force” and “flow” in thermodynamics, oil displacement fields are divided into three groups: destination, driving and resistance potential fields. Based on the seepage law, the compositional structure of driving and resistance potential fields has been established by making use of non-equilibrium thermodynamics. In addition, coupling indexes among driving, resistance and a combination of both potential fields can be deduced. Then, the main process of multi-level analysis of oil displacement mechanism of field synergy in the process of heavy oil thermal recovery can be put forward. A practical multi-level case study of typical hot-water flooding displacement can provide useful information and guidance to enhance the displacement process. 相似文献
The determining of landslide-prone areas in mountainous terrain is essential for land planning and hazard mitigation. In this paper, a comparative study using three statistical models including weight of evidence model (WoE), logistic regression model (LR) and support vector machine method (SVM) was undertaken in the Zhouqu to Wudu segment in the Bailong River Basin, Southern Gansu, China. Six conditionally independent environmental factors, elevation, slope, aspect, distance from fault, lithology and settlement density, were selected as the explanatory variables that may contribute to landslide occurrence based on principal component analysis (PCA) and Chi-square test. The relation between landslide distributions and these variables was analyzed using the three models and the results then used to calculate the landslide susceptibility (LS). The performance of the models was then evaluated using both the highly accurate deformation signals produced by using the Small Baseline Subset Interferometric Synthetic Aperture Radar technique and Receiver Operating Characteristic (ROC) curve. Results show more deformation points in areas with high and very high LS levels, and also more stable points in areas with low and very low LS levels for the SVM model. In addition, the SVM has larger area under the ROC curve. It indicates that the SVM has better prediction accuracy and classified ability. For the interpretability, the WoE derives the class of factors that most contributed to landsliding in the study area, and the LR reveals that factors including elevation, settlement density and distance from fault played major roles in landslide occurrence and distribution, whereas the SVM cannot provide relative weights for the variables. The outperformed SVM could be employed to determine potential landslide zones in the study area. Outcome of this research would provide preliminary basis for general land planning such as choosing new urban areas and infrastructure construction in the future, as well as for landslide hazard mitigation in Bailong River Basin. 相似文献
The devastating damage after the 1999 Chi-Chi and 1999 Izmit earthquakes has greatly motivated soil–reverse fault interaction studies. However, most centrifuge modeling studies have employed a single homogeneous soil layer during testing, which does not represent in situ conditions. Indeed, while geological conditions vary spatially, engineering soils are often underlain by soft rocks. Therefore, four centrifuge models were developed to evaluate the effect of soft rock layers on the ground surface and subsurface deformation. Sand–cement mixtures of varying thicknesses with a uniaxial compressive strength of 0.975 MPa, simulating extremely soft rock, were overlain by pluviated sandy soil. The model thickness was 100 mm, corresponding to 8 m in the prototype scale when spun at 80 g. Every model was subjected to a vertical offset of 50 mm/4 m (0.5 H; H: total sedimentary deposit thickness) along a reverse fault with a 60° dip. The results indicate that the presence of a soft rock stratum results in the creation of a horst profile at the ground surface. Additionally, the thinner the soil layer on top of the soft rock stratum is, the longer and higher the horst created at the ground surface. Consequently, the fault deformation zone lengthens proportionally with the increasing thickness ratio of the soft rock. Furthermore, the presence of soft rock as an intermediary stratum between bedrock and soil causes the deformation zone boundary on the hanging wall side to move in the direction of fault movement.
Yinhuang Irrigation District in Ningxia, as the top rice production area of high quality and quantity, has a long history in rice planting. The studies of the effective measures for the rice production replying the climate change were very important for reducing the harm of the future climate change and crop supply safety in Ningxia Province. Based on the coupling of the PRECIS model and the crop model CERES Rice, the effects of climate change on the rice production and growth stage in Yinhuang Irrigation District in Ningxia Province were simulated and evaluated, and the adaptability measures of rice production were studied. The results showed that the CERES Rice model had the preferable simulation capability, and the modified PRECIS model also could preferably simulate the required climate parameter. The crop model simulation results showed that the climate change had some influence on the rice production and growth stage in Yinhuang Irrigation District. The rice production goes down under future climate change scenarios in Ningxia Province. The trend of reduction of 2050s is more apparent than that of 2020s under the same scenarios,but the spatial change trend is similar. The extent and range of reduction of A2 scenario are wider than that of B2 scenario in the same period, but spatial change trend is different. For the change of growth stage, there has no obvious change in the north and the central part of the Yinhuang Irrigation District. The duration in 2050s shortens more obviously than that of 2020s under the same scenario, and the duration under B2 scenario shortens more obviously than that under A2 scenario in the same period. The results of adjusting the sowing date and the rice variety parameter G4 showed that the negative impact of climate change on the rice production can be reduced by sowing date advance in Yinhuang Irrigation District in Ningxia Province. There has obvious difference for the optimal G4 values of different region in Yinhuang Irrigation District, and the rice production can also be effectively upraised by adjusting the rice variety characteristic and cultivating the heat resistant rice varieties. The optimal G4 values can mitigate the damage of climate change on the rice production in Yinhuang Irrigation District in Ningxia Province. 相似文献
When rock samples are loaded until macroscopic fractures develop, the failure process can be divided into several stages based on axial and lateral strain responses or the acoustic emission sequence during uniaxial compression tests. Several stress thresholds may be identified: the crack closure stress σcc, crack initiation stress σci, crack damage stress σcd, and uniaxial compressive strength σucs; these may be used as a warning indicator for rock rupture. We investigated the crack damage stress σcd, its threshold, and a possible relationship between σcd and the uniaxial compressive strength. The σcd of different rock types were compiled from previous studies based on uniaxial compression tests. The results showed that the overall averages and standard deviations of σcd/σucs for igneous, metamorphic, and sedimentary rocks were ~0.78 (±0.11), ~0.85 (±0.11), and ~0.73 (±0.18), respectively. There were no significant differences in σcd/σucs between the different rock types, except that the sedimentary rock had a slightly larger standard deviation attributed to the variation of porosity in the samples, while the metamorphic rock had higher average σcd/σucs resulting from the small statistical sample size. By excluding the higher-porosity (>10 %) rock samples, the averages and standard deviations of σcd/σucs for igneous, metamorphic, and sedimentary rocks were ~0.78 (±0.09), ~0.85 (±0.09), and ~0.78 (±0.11), respectively. The results imply that the rock origin process (i.e., igneous, metamorphic, and sedimentary) has a minimal effect on σcd/σucs. The ratio σcd/σucs could be an essential intrinsic property for low-porosity rocks, which could be used in rock engineering for predicting the failure process. 相似文献