首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   3篇
大气科学   22篇
地球物理   29篇
地质学   51篇
海洋学   6篇
天文学   47篇
自然地理   13篇
  2022年   2篇
  2021年   7篇
  2020年   5篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   7篇
  2015年   5篇
  2014年   5篇
  2013年   11篇
  2012年   4篇
  2011年   5篇
  2010年   4篇
  2009年   7篇
  2008年   6篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   4篇
  2003年   3篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1997年   5篇
  1996年   4篇
  1994年   2篇
  1992年   2篇
  1991年   3篇
  1989年   6篇
  1988年   2篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1960年   3篇
  1958年   1篇
  1957年   1篇
  1956年   2篇
  1954年   1篇
  1953年   1篇
排序方式: 共有168条查询结果,搜索用时 15 毫秒
131.
    
Surface infiltration and internal drainage properties of five soil types from arid drylands of South Africa were studied under double ring infiltrometer, rainfall simulation plots (1 m2) and instantaneous drainage plots (9 m2). Changes in soil water content during 40 minute rainfall simulation for a rainstorm with average intensity of 1.61 mm min?1 and 30 day drainage period were measured at various depths by 1.5 m long capacitance soil water measuring (DFM) probe. Different (P < 0.05) mean surface steady infiltration rate ranged from 0.05 to 4.47 mm min?1 and had a negative power relationship (R 2 = 0.65) with horizon clay plus fine silt content. Power regression (R 2 ≥ 86%) described rainstorm infiltration and obtained steady rates within an average time of 15 minutes. Mean total infiltrated soil water content was lowest (P < 0.05) from surface horizons with either 47.7% clay plus fine silt content or bulk density of 1.91 g cm?3 and exchangeable sodium of not less than 44 mg kg?1. Surface horizons with lower surface bulk density and total sand fraction of more than 72% had infiltrated depth and mean total infiltrated soil water content up to 40 cm deeper and 0.55 mm mm?1 greater, respectively. Drainage rate at drained upper limit calculated from the Wilcox drainage model (R 2 ≤ 0.97%) was 0.2 mm day?1 or less were from underlying horizons with either clay plus fine silt of 45% or soft calcium carbonate. Higher drainage rate with accumulative drainage amount greater than 60 mm were from soil profile horizons with clay plus fine silt content of less than 20% and above unity steady infiltration rates. Rainstorm infiltration and drainage rates was shown to depend on permeability and coarseness of the respective soil surface and subsurface horizons; a phenomenon critical for harnessing rain and flood water to recharge groundwater. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
132.
133.
Abstract

In this article we propose a careful analysis of the economic consequences of the Kyoto Protocol for Russia, taking into account the most recently available data and the latest developments in the trends regarding Russian economic recovery. We present a review of different GHG forecasts for Russia and develop a new forecast for uncertain GDP growth and changing elasticity of GHG emission per GDP. Since the rate of growth remains uncertain, elasticity could change over time, as well as the fuel mix. We apply the Monte-Carlo method to simulate these uncertainties and to produce a reasonable interval for CO2 emissions in 2010. The probability of Russia exceeding its Kyoto emissions budget is essentially zero. Further, we discuss the benefits for Russia from the Kyoto Protocol, and more generally from implementation of GHG mitigation policy. Ancillary benefits from Kyoto Protocol implementation will bring essential reductions in risk to human health. On the other hand, potential negative changes in the fuel mix and GDP structure, as well as a slowing of the innovation process, could exacerbate existing health problems. Alternatives to the Kyoto Protocol may bring much tougher commitments to Russia. We conclude that the Kyoto Protocol is the best possible deal for Russia. Therefore, Russia most will ratify it.  相似文献   
134.
135.
Underwater dunes are a morphological feature that are explored by marine scientists and coastal engineers alike. This study presents new methodologies in order to simplify bedform identification and morphodynamic analyses. Specifically, subaqueous compound dunes are decomposed with a simple yet extensive tracking algorithm, which relies on a repeated evaluation of unfiltered bed elevation profiles according to five predefined length classes. In a second step, morphological trends are assessed in the form of bed migration rates, bed slope asymmetries and net sediment changes, in which all parameters are referred to equidistant sections of the examined fairway stretch. This integrated approach not only avoids the challenges in weighting the varying size and abundance of dunes of different scales but also ensures comparability between dune-specific and areal parameters, which significantly improves the interpretation of the morphological setting as a whole. The developed methods are applied to the Outer Jade fairway, an anthropogenically influenced and regularly maintained waterway in the German Bight, and allow scrutiny of spatio-temporal trends in this region. Based on a unique data set of 100 sequential high-quality echo-sounding surveys, various types of bedforms are identified, comprising large-scale primary as well as superimposing secondary dunes that are assumed to interfere with each other. Temporal trends show a long-term rise of the troughs of major bedforms and constant maximum crest elevations near the official maintenance depth, which matches the observed long-term aggradation of sediments. The spatial distribution of integrated morphodynamic parameters reflects a previously described zone of primary dune convergence and facilitates the precise localization of this geophysical singularity. The presented findings both confirm the robustness of the proposed methodologies and, in return, enhance the understanding of morphological processes in the Outer Jade. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
136.
Xiao  Yang  He  Xiang  Wu  Wei  Stuedlein  Armin W.  Evans  T. Matthew  Chu  Jian  Liu  Hanlong  van Paassen  Leon A.  Wu  Huanran 《Acta Geotechnica》2021,16(10):3229-3237

A homogeneous microfluidic chip was used to investigate the pore-scale characteristics during the process of microbially induced calcium carbonate precipitation (MICP). An image-processing scheme was developed to measure the projecting areas of the precipitated calcium carbonate. Calcium carbonate first precipitated on the bacterium side before spreading to the rest of the chip. The distribution of calcium carbonate was more uniform along the length of the microchip than along the width. Raman back-scattering spectroscopy was used to examine the chemical composition of the precipitate, identifying calcite and vaterite as the main mineral phases. Bacterium traces were noted on crystal surfaces in SEM images, suggesting a higher adsorptive capacity for irregular precipitates than well-shaped crystals.

  相似文献   
137.
We investigate the process of galaxy formation as can be observed in the only currently forming galaxies - the so-called Tidal Dwarf Galaxies, hereafter TDGs - through observations of the molecular gas detected via its CO (Carbon Monoxide) emission. These objects are formed of material torn off of the outer parts of a spiral disk due to tidal forces in a collision between two massive galaxies. Molecular gas is a key element in the galaxy formation process, providing the link between a cloud of gas and a bona fide galaxy. We have detected CO in 8 TDGs (Braine, Lisenfeld, Duc and Leon, 2000: Nature 403, 867; Braine, Duc, Lisenfeld, Charmandaris, Vallejo, Leon and Brinks: 2001, A&A 378, 51), with an overall detection rate of 80%, showing that molecular gas is abundant in TDGs, up to a few 108 M . The CO emission coincides both spatially and kinematically with the HI emission, indicating that the molecular gas forms from the atomic hydrogen where the HI column density is high. A possible trend of more evolved TDGs having greater molecular gas masses is observed, in accord with the transformation of HI into H2. Although TDGs share many of the properties of small irregulars, their CO luminosity is much greater (factor ∼ 100) than that of standard dwarf galaxies of comparable luminosity. This is most likely a consequence of the higher metallicity (≳sim 1/3 solar) of TDGs which makes CO a good tracer of molecular gas. This allows us to study star formation in environments ordinarily inaccessible due to the extreme difficulty of measuring the molecular gas mass. The star formation efficiency, measured by the CO luminosity per Hα flux, is the same in TDGs and full-sized spirals. CO is likely the best tracer of the dynamics of these objects because some fraction of the HI near the TDGs may be part of the tidal tail and not bound to the TDG. Although uncertainties are large for individual objects, as the geometry is unknown, our sample is now of eight detected objects and we find that the ‘dynamical’ masses of TDGs, estimated from the CO line widths, seem not to be greater than the ‘visible’ masses (HI + H2 + a stellar component). Although higher spatial resolution CO (and HI) observations would help reduce the uncertainties, we find that TDGs require no dark matter, which would make them the only galaxy-sized systems where this is the case. Dark matter in spirals should then be in a halo and not a rotating disk. Most dwarf galaxies are dark matter-rich, implying that they are not of tidal origin. We provide strong evidence that TDGs are self-gravitating entities, implying that we are witnessing the ensemble of processes in galaxy formation: concentration of large amounts of gas in a bound object, condensation of the gas, which is atomic at this point, to form molecular gas and the subsequent star formation from the dense molecular component. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   
138.
We have measured the lifetimes of all compact emission features visible on three sets of high time resolution soft X-ray images. The spectrum of lifetimes is found to be heavily weighted toward short lifetimes. The number of features present on the disk which live 2–48 hours is at least ten times as great as the number living more than 48 hours. The distribution of lifetimes can be fit in all three cases by a four-parameter function N(t) = N s exp(-t/ s ) + N L exp(-t/ L ), with s = 8.7±0.2, L = 35±4 and N s 10N L . Features living two days or less have a very broad latitude distribution (Golub et al., 1974, 1975) whereas nearly all longer-lived features are found within 30° of the equator. The growth rates of long-lived vs short-lived points are the same to within 20%, the major difference being that long-lived points continue to grow and generally reach larger sizes.Harvard College Observatory/Smithsonian Astrophysical Observatory.  相似文献   
139.
140.
Observations of X-ray bright points (XBP) over a six-month interval in 1973 show significant variations in both the number density of XBP as a function of heliographic longitude and in the full Sun average number of XBP from one rotation to the next. The observed increases in XBP emergence are estimated to be quivalent to several large active regions emerging per day for several months. The number of XBP emerging at high latitudes also varies, in phase with the low latitude variation and reaches a maximum approximately simultaneous with a major outbreak of active regions. The quantity of magnetic flux emerging in the form of XBP at high latitudes alone is estimated to be as large as the contribution from all active regions.Harvard College Observatory/Smithsonian Astrophysical Observatory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号