首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   1篇
测绘学   5篇
大气科学   4篇
地球物理   9篇
地质学   11篇
海洋学   2篇
天文学   25篇
自然地理   2篇
  2023年   1篇
  2020年   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   7篇
  2008年   5篇
  2007年   3篇
  2006年   6篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1983年   1篇
  1970年   1篇
  1964年   1篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
11.
Summary The mean zonal and meridional wind components of the northern hemisphere at different pressure levels for the summer season June–August have been determined and the mean meridional mass circulation has been computed as a function of latitude. From the mass circulation the meridional flux of moisture is computed for the latitudinal belt 0°–45° N. Using the horizontal divergence of this flux the average difference between precipitation and evapotranspiration from the earth's surface is evaluated.  相似文献   
12.
Abstract— Correlated in situ analyses of the oxygen and magnesium isotopic compositions of aluminum‐rich chondrules from unequilibrated enstatite chondrites were obtained using an ion microprobe. Among eleven aluminum‐rich chondrules and two plagioclase fragments measured for 26Al‐26Mg systematics, only one aluminum‐rich chondrule contains excess 26Mg from the in situ decay of 26Al; the inferred initial ratio (26Al/27Al)o = (6.8 ± 2.4) × 10?6 is consistent with ratios observed in chondrules from carbonaceous chondrites and unequilibrated ordinary chondrites. The oxygen isotopic compositions of five aluminum‐rich chondrules and one plagioclase fragment define a line of slope ?0.6 ± 0.1 on a three‐oxygen‐isotope diagram, overlapping the field defined by ferromagnesian chondrules in enstatite chondrites but extending to more 16O‐rich compositions with a range in δ18O of about ?12‰. Based on their oxygen isotopic compositions, aluminum‐rich chondrules in unequilibrated enstatite chondrites are probably genetically related to ferromagnesian chondrules and are not simple mixtures of materials from ferromagnesian chondrules and calcium‐aluminum‐rich inclusions (CAIs). Relative to their counterparts from unequilibrated ordinary chondrites, aluminum‐rich chondrules from unequilibrated enstatite chondrites show a narrower oxygen isotopic range and much less resolvable excess 26Mg from the in situ decay of 26Al, probably resulting from higher degrees of equilibration and isotopic exchange during post‐crystallization metamorphism. However, the presence of 26Al‐bearing chondrules within the primitive ordinary, carbonaceous, and now enstatite chondrites suggests that 26Al was at least approximately homogeneously distributed across the chondrite‐forming region.  相似文献   
13.
Abstract— We present a database of magnetic susceptibility measurements on 971 ordinary chondrites. It demonstrates that this parameter can be successfully used to characterize and classify ordinary chondrite meteorites. In ordinary chondrites, this rapid and non‐destructive measurement essentially determines the amount of metal in the sample, which occurs in a very narrow range for each chondrite class (though terrestrial weathering can result in a variable decrease in susceptibility, especially in finds). This technique is particularly useful not only for a rapid classification of new meteorites, but also as a check against curation errors in large collections (i.e., unweathered meteorites, the measured susceptibility of which lies outside the expected range, may well be misclassified or misidentified samples). Magnetic remanence, related to magnetic field measurements around asteroids, is also discussed.  相似文献   
14.
We report on a comparative study of nearby shocked clouds with and without star formation, based on IRAS, HI(21cm), CO(1-0) NH3 (and other molecular line) observations. The dark clouds L1780 (no star formation) and L1251 (high SFE) are discussed here. Their density and velocity structure are compared with the predictions of the HD model of Horváth & Tóth (1995), Paper I.  相似文献   
15.
Abstract— We measured 36Cl‐36S and 26Al‐26Mg systematics and O isotopes of secondary phases in a moderately altered type B2 CAI (CAI#2) from the Allende CV3 chondrite. CAI#2 has two distinct alteration domains: the anorthite‐grossular (An‐Grs) domain that mostly consists of anorthite and grossular, and the Na‐rich domain that mostly consists of sodalite, anorthite, and Fe‐bearing phases. Large 36S excesses (up to ~400‰) corresponding to an initial 36Cl/35Cl ratio of (1.4 ± 0.3) × 10?6 were observed in sodalite of the Na‐rich domain, but no resolvable 26Mg excesses were observed in anorthite and sodalite of the Na‐rich domain (the initial 26Al/27Al ratio < 4.4 × 10?7). If we assume that the 36Cl‐36S and the 26Al‐26Mg systematics were closed simultaneously, the 36Cl/35Cl ratio would have to be on the order of ~10?2 when CAIs were formed. In contrast to sodalite in Na‐rich domain, significant 26Mg excesses (up to ~35‰) corresponding to an initial 26Al/27Al ratio of (1.2 ± 0.2) × 10?5 were identified in anorthite of the An‐Grs domain. The 26Al‐26Mg systematics of secondary phases in CAI#2 suggest that CAIs experienced multiple alteration events. Some of the alteration processes occurred while 36Cl (half‐life is 0.3 Myr) and 26Al (half‐life is 0.72 Myr) were still alive, whereas others took place much later. Assuming that 26Al was homogeneously distributed in the solar nebula, our study implies that alteration of CAIs occurred as early as within 1.5 Myr of CAI formation and as late as 5.7 Myr after.  相似文献   
16.
Abstract– There are 31 proven impact structures in Fennoscandia—one of the most densely crater‐populated areas of the Earth. The recently discovered Keurusselkä impact structure (62°08′ N, 24°37′ E) is located within the Central Finland Granitoid Complex, which formed 1890–1860 Ma ago during the Svecofennian orogeny. It is a deeply eroded complex crater that yields in situ shatter cones with evidence of shock metamorphism, e.g., planar deformation features in quartz. New petrophysical and rock magnetic results of shocked and unshocked target rocks of various lithologies combined with paleomagnetic studies are presented. The suggested central uplift with shatter cones is characterized by increased magnetization and susceptibility. The presence of magnetite and pyrrhotite was observed as carriers for the remanent magnetization. Four different remanent magnetization directions were isolated: (1) a characteristic Svecofennian target rock component A with a mean direction of D = 334.8°, I = 45.6°, α95 = 14.9° yielding a pole (Plat = 51.1°, Plon = 241.9°, A95 = 15.1°), (2) component B, D = 42.4°, I = 64.1°, α95 = 8.4° yielding a pole (Plat = 61.0°, Plon = 129.1°, A95 = 10.6°), (3) component C (D = 159.5°, I = 65.4°, α95 = 10.7°) yielding a pole (Plat = 21.0°, Plon = 39.3°, A95 = 15.6°), and (4) component E (D = 275.5°, I = 62.0°, α95 = 14.4°) yielding a pole (Plat = 39.7°, Plon = 314.3°, A95 = 19.7°). Components C and E are considered much younger, possibly Neoproterozoic overprints, compared with the components A and B. The pole of component B corresponds with the 1120 Ma pole of Salla diabase dyke and is in agreement with the 40Ar/39Ar age of 1140 Ma from a pseudotachylitic breccia vein in a central part of the structure. Therefore, component B could be related to the impact, and thus represent the impact age.  相似文献   
17.
Impact cratering is one of the fundamental processes in the formation of the Earth and our planetary system, as reflected, for example in the surfaces of Mars and the Moon. The Earth has been covered by a comparable number of impact scars, but due to active geological processes, weathering, sea floor spreading etc, the number of preserved and recognized impact craters on the Earth are limited. The study of impact structures is consequently of great importance in our understanding of the formation of the Earth and the planets, and one way we directly, on the Earth, can study planetary geology.
The Nordic-Baltic area have about thirty confirmed impact structures which makes it one of the most densely crater-populated terrains on Earth. The high density of identified craters is due to the level of research activity, coupled with a deterministic view of what we look for. In spite of these results, many Nordic structures are poorly understood due to the lack of 3D-geophysical interpretations, isotopeor other dating efforts and better knowledge of the amount of erosion and subsequent tectonic modifications.
The Nordic and Baltic impact community is closely collaborating in several impact-related projects and the many researchers (about forty) and PhD students (some seventeen) promise that this level will continue for many more years. The main topics of research include geological, geophysical and geochemical studies in combination with modeling and impact experiments. Moreover, the Nordic and Baltic crust contains some hundred suspect structures which call for detailed analysis to define their origin.
New advanced methods of analyzing geophysical information in combination with detailed geochemical analyses and numerical modeling will be the future basic occupation of the impact scientists of the region. The unique Cretaceous/Tertiary boundary (K-T) occurrences in Denmark form an important source of information in explaining one of the major mass extinctions on Earth.  相似文献   
18.
19.
Abstract– Physical properties of multidomain magnetite‐bearing porous pellets shocked up to 45 GPa were measured. The results show general magnetic softening as a result of shock. However, a relative magnetic hardening trend and slight magnetic susceptibility decrease is observed with increasing pressure among shocked samples. Initially, the shock also seems to cause a slight decrease in porosity, but at higher shock pressures macroscopic porosity increases progressively in our pellets. The microscopic porosity remains almost unchanged. Since our samples have distinctly higher initial porosity compared with samples used in previous studies, our results may be representative for impacts into highly porous magnetite‐bearing sedimentary or volcanic rocks and are relevant to impacts into such target rocks on Earth and Mars.  相似文献   
20.
The terrestrial impact record contains currently ~145 structures and includes the morphological crater types observed on the other terrestrial planets. It has, however, been severely modified by terrestrial geologic processes and is biased towards young (≤ 200 Ma) and large (≥ 20 km) impact structures on relatively well-studied cratonic areas. Nevertheless, the ground-truth data available from terrestrial impact structures have provided important constraints for the current understanding of cratering processes. If the known sample of impact structures is restricted to a subsample in which it is believed that all structures ≥ 20 km in diameter (D) have been discovered, the estimated terrestrial cratering rate is 5.5±2.7 × 10?15km?2a?1 for D ≥ 20 km. This rate estimate is equivalent to that based on astronomical observations of Earth-crossing bodies. These rates are a factor of two higher, however, than the estimated post-mare cratering rate on the moon but the large uncertainties preclude definitive conclusions as to the significance of this observation. Statements regarding a periodicity in the terrestrial cratering record based on time-series analyses of crater ages are considered unjustified, based on statistical arguments and the large uncertainties attached to many crater age estimates. Trace element and isotopic analyses of generally siderophile group elements in impact lithologies, particularly impact melt rocks, have provided the basis for the identification of impacting body compositions at a number of structures. These range from meteoritic class, e.g., C-1 chondrite, to tentative identifications, e.g., stone?, depending on the quality and quantity of analytical data. The majority of the identifications indicate chondritic impacting bodies, particularly with respect to the larger impact structures. This may indicate an increasing role for cometary impacts at larger diameters; although, the data base is limited and some identifications are equivocal. To realize the full potential of the terrestrial impact record to constrain the character of the impact flux, it will be necessary to undertake additional and systematic isotopic and trace element analyses of impact lithologies at well-characterized terrestrial impact structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号