首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   578篇
  免费   21篇
  国内免费   11篇
测绘学   15篇
大气科学   89篇
地球物理   119篇
地质学   235篇
海洋学   51篇
天文学   69篇
自然地理   32篇
  2024年   1篇
  2023年   2篇
  2022年   7篇
  2021年   9篇
  2020年   12篇
  2019年   14篇
  2018年   15篇
  2017年   12篇
  2016年   20篇
  2015年   15篇
  2014年   28篇
  2013年   43篇
  2012年   34篇
  2011年   45篇
  2010年   28篇
  2009年   60篇
  2008年   37篇
  2007年   34篇
  2006年   33篇
  2005年   33篇
  2004年   20篇
  2003年   8篇
  2002年   31篇
  2001年   9篇
  2000年   5篇
  1999年   7篇
  1998年   2篇
  1997年   9篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1992年   2篇
  1991年   2篇
  1990年   6篇
  1989年   2篇
  1988年   5篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1971年   1篇
排序方式: 共有610条查询结果,搜索用时 0 毫秒
61.
The ocean heat transport into the Arctic and the heat budget of the Barents Sea are analyzed in an ensemble of historical and future climate simulations performed with the global coupled climate model EC-Earth. The zonally integrated northward heat flux in the ocean at 70°N is strongly enhanced and compensates for a reduction of its atmospheric counterpart in the twenty first century. Although an increase in the northward heat transport occurs through all of Fram Strait, Canadian Archipelago, Bering Strait and Barents Sea Opening, it is the latter which dominates the increase in ocean heat transport into the Arctic. Increased temperature of the northward transported Atlantic water masses are the main reason for the enhancement of the ocean heat transport. The natural variability in the heat transport into the Barents Sea is caused to the same extent by variations in temperature and volume transport. Large ocean heat transports lead to reduced ice and higher atmospheric temperature in the Barents Sea area and are related to the positive phase of the North Atlantic Oscillation. The net ocean heat transport into the Barents Sea grows until about year 2050. Thereafter, both heat and volume fluxes out of the Barents Sea through the section between Franz Josef Land and Novaya Zemlya are strongly enhanced and compensate for all further increase in the inflow through the Barents Sea Opening. Most of the heat transported by the ocean into the Barents Sea is passed to the atmosphere and contributes to warming of the atmosphere and Arctic temperature amplification. Latent and sensible heat fluxes are enhanced. Net surface long-wave and solar radiation are enhanced upward and downward, respectively and are almost compensating each other. We find that the changes in the surface heat fluxes are mainly caused by the vanishing sea ice in the twenty first century. The increasing ocean heat transport leads to enhanced bottom ice melt and to an extension of the area with bottom ice melt further northward. However, no indication for a substantial impact of the increased heat transport on ice melt in the Central Arctic is found. Most of the heat that is not passed to the atmosphere in the Barents Sea is stored in the Arctic intermediate layer of Atlantic water, which is increasingly pronounced in the twenty first century.  相似文献   
62.
63.
Self-organizing map (SOM) is used to simulate summer daily precipitation over the Yangtze–Huaihe river basin in Eastern China, including future projections. SOM shows good behaviors in terms of probability distribution of daily rainfall and spatial distribution of rainfall indices, as well as consistency of multi-model simulations. Under RCP4.5 Scenario, daily rainfall at most sites (63%) is projected to shift towards larger values. For the early 21st century (2016–2035), precipitation in the central basin increases, yet decreases occur over the middle reaches of the Yangtze River as well as a part of its southeast area. For the late 21st century (2081–2100), the mean precipitation and extreme indices experience an overall increase except for a few southeast stations. The total precipitation in the lower reaches of the Yangtze River and in its south area is projected to increase from 7% at 1.5 °C global warming to 11% at 2 °C, while the intensity enhancement is more significant in southern and western sites of the domain. A clustering allows to regroup all SOM nodes into four distinct regimes. Such regional synoptic regimes show remarkable stability for future climate. The overall intensification of precipitation in future climate is linked to the occurrence-frequency rise of a wet regime which brings longitudinally closer the South Asia High (eastward extended) and the Western Pacific Subtropical High (westward extended), as well as the reduction of a dry pattern which makes the two atmospheric centers of action move away from each other.  相似文献   
64.
An analysis of the dynamics of the flow over a street canyon immersed in an atmospheric boundary layer is presented, using particle image velocimetry measurements in a wind tunnel. Care was taken to generate a 1:200 model scale urban type boundary layer that is correctly scaled to the size of the canyon buildings. Using proper orthogonal decomposition (POD) of the velocity field and conditional averaging techniques, it is first shown that the flow above the opening of the canyon consists of a shear layer separating from the upstream obstacle, animated by a coherent flapping motion and generating large-scale vortical structures. These structures are alternately injected into the canyon or shed off the obstacle into the outer flow. It is shown that unsteady fluid exchanges between the canyon and the outer flow are mainly driven by the shear layer. Finally, using POD, the non-linear interaction between the large-scale structures of the oncoming atmospheric boundary layer and the flow over the canyon is demonstrated.  相似文献   
65.
In order to fulfill the society demand for climate information at the spatial scale allowing impact studies, long-term high-resolution climate simulations are produced, over an area covering metropolitan France. One of the major goals of this article is to investigate whether such simulations appropriately simulate the spatial and temporal variability of the current climate, using two simulation chains. These start from the global IPSL-CM4 climate model, using two regional models (LMDz and MM5) at moderate resolution (15–20 km), followed with a statistical downscaling method in order to reach a target resolution of 8 km. The statistical downscaling technique includes a non-parametric method that corrects the distribution by using high-resolution analyses over France. First the uncorrected simulations are evaluated against a set of high-resolution analyses, with a focus on temperature and precipitation. Uncorrected downscaled temperatures suffer from a cold bias that is present in the global model as well. Precipitations biases have a season- and model-dependent behavior. Dynamical models overestimate rainfall but with different patterns and amplitude, but both have underestimations in the South-Eastern area (Cevennes mountains) in winter. A variance decomposition shows that uncorrected simulations fairly well capture observed variances from inter-annual to high-frequency intra-seasonal time scales. After correction, distributions match with analyses by construction, but it is shown that spatial coherence, persistence properties of warm, cold and dry episodes also match to a certain extent. Another aim of the article is to describe the changes for future climate obtained using these simulations under Scenario A1B. Results are presented on the changes between current and mid-term future (2021–2050) averages and variability over France. Interestingly, even though the same global climate model is used at the boundaries, regional climate change responses from the two models significantly differ.  相似文献   
66.
Although GNSS techniques are theoretically sensitive to the Earth center of mass, it is often preferable to remove intrinsic origin and scale information from the estimated station positions since they are known to be affected by systematic errors. This is usually done by estimating the parameters of a linearized similarity transformation which relates the quasi-instantaneous frames to a long-term frame such as the International Terrestrial Reference Frame (ITRF). It is well known that non-linear station motions can partially alias into these parameters. We discuss in this paper some procedures that may allow reducing these aliasing effects in the case of the GPS techniques. The options include the use of well-distributed sub-networks for the frame transformation estimation, the use of site loading corrections, a modification of the stochastic model by downweighting heights, or the joint estimation of the low degrees of the deformation field. We confirm that the standard approach consisting of estimating the transformation over the whole network is particularly harmful for the loading signals if the network is not well distributed. Downweighting the height component, using a uniform sub-network, or estimating the deformation field perform similarly in drastically reducing the amplitude of the aliasing effect. The application of these methods to reprocessed GPS terrestrial frames permits an assessment of the level of agreement between GPS and our loading model, which is found to be about 1.5 mm WRMS in height and 0.8 mm WRMS in the horizontal at the annual frequency. Aliased loading signals are not the main source of discrepancies between loading displacement models and GPS position time series.  相似文献   
67.
68.
Trace element and isotopic characteristics of late Carboniferous to early Permian minettes and kersantites have been determined. These lamprophyres have been sampled throughout the Western European Hercynian orogen, from Brittany to the west to Schwarzwald to the east. In spite of sharp petrological differences reflected by mineralogy and major element geochemistry, minettes and kersantites exhibit close identity with respect to trace element and isotopic features. These features comprise enrichment in incompatible elements, highCs/Rb and lowCe/Pb ratios, Ta and Ti relative depletion, high abundance in transition elements and highNi/Mg ratios. Pb isotope ratios are undistinguishable from those measured on Hercynian continental crust. Initial143Nd/144Nd ratios are between0.5120 (εi −5) and0.5122 (εi −1) for minettes and kersantites whereas initial87Sr/86Sr ratios vary between 0.7055–0.710 for minettes and 0.707–0.708 for kersantites. No simple mixing relations are visible on RbSr and SmNd isochron diagrams. The exceptional homogeneity of these geochemical characteristics along a 1000 km traverse does not allow for an hypothesis of enrichment through upper level assimilation and thus leads to propose that these rocks originated through melting of a mantle enriched by recycling of crustal material.  相似文献   
69.
1Introduction Since the last glacial maximum, the Holocenehas been marked by a rapid rise in sea level. After6 000 a BP, the present-day level was reached andthe rate of sea-level rise (SLR) decreased rapidly(Morzadec -Kerfourn, 1974; Kidson, 1986 ).These…  相似文献   
70.
The light deviation caused by the gravitational potential in the vicinity of the sun could be used as a means of focussing radiation that cannot be focussed easily otherwise. The gravitational lens formed by the sun is not stigmatic, but does have the advantage of being achromatic and acts identically on all types of mass-less radiations. For a source at infinity, its geometrical characteristics present a “caustic” line starting at 550 astronomical units (UA) downstream from the sun. In a plane perpendicular to that caustic line, images of distant objects are formed.The perturbations by the solar corona plasma will significantly blur electromagnetic radiation for wavelengths longer than those of the IR domain. At shorter wavelengths, for example the γ domain, the focussing process could lead to 108 amplification factors. In order to reach the regions where images are formed, long distance space missions are necessary. Once launched, missions of this type would be dedicated to a single field. Some possible targets are considered, such as Sagitarius A observed in X and γ rays.In this paper we study the point spread function (PSF) of the sun as a gravitational lens. Taking into account perturbations by the planets, the non sphericity of the sun and coronal plasma index, we derive limits within which such observations could be possible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号