首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   526篇
  免费   15篇
  国内免费   7篇
测绘学   41篇
大气科学   37篇
地球物理   138篇
地质学   142篇
海洋学   77篇
天文学   64篇
综合类   3篇
自然地理   46篇
  2023年   4篇
  2022年   4篇
  2021年   4篇
  2020年   10篇
  2019年   8篇
  2018年   13篇
  2017年   15篇
  2016年   18篇
  2015年   16篇
  2014年   21篇
  2013年   25篇
  2012年   19篇
  2011年   26篇
  2010年   27篇
  2009年   45篇
  2008年   21篇
  2007年   29篇
  2006年   34篇
  2005年   13篇
  2004年   15篇
  2003年   20篇
  2002年   17篇
  2001年   13篇
  2000年   13篇
  1999年   9篇
  1998年   7篇
  1997年   10篇
  1996年   9篇
  1995年   10篇
  1994年   6篇
  1993年   9篇
  1992年   10篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   6篇
  1987年   3篇
  1985年   3篇
  1984年   4篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1949年   1篇
排序方式: 共有548条查询结果,搜索用时 0 毫秒
51.
52.
If we are to limit global warming to 2 °C, all sectors in all countries must reduce their emissions of GHGs to zero not later than 2060–2080. Zero-emission options have been less explored and are less developed in the energy-intensive basic materials industries than in other sectors. Current climate policies have not yet motivated major efforts to decarbonize this sector, and it has been largely protected from climate policy due to the perceived risks of carbon leakage and a focus on short-term reduction targets to 2020. We argue that the future global climate policy regime must develop along three interlinked and strategic lines to facilitate a deep decarbonization of energy-intensive industries. First, the principle of common but differentiated responsibility must be reinterpreted to allow for a dialogue on fairness and the right to development in relation to industry. Second, a greater focus on the development, deployment and transfer of technology in this sector is called for. Third, the potential conflicts between current free trade regimes and motivated industrial policies for deep decarbonization must be resolved. One way forward is to revisit the idea of sectoral approaches with a broader scope, including not only emission reductions, but recognizing the full complexity of low-carbon transitions in energy-intensive industries. A new approach could engage industrial stakeholders, support technology research, development and demonstration and facilitate deployment through reducing the risk for investors. The Paris Agreement allows the idea of sectoral approaches to be revisited in the interests of reaching our common climate goals.

Policy relevance

Deep decarbonization of energy-intensive industries will be necessary to meet the 2 °C target. This requires major innovation efforts over a long period. Energy-intensive industries face unique challenges from both innovation and technical perspectives due to the large scale of facilities, the character of their global markets and the potentially high mitigation costs. This article addresses these challenges and discusses ways in which the global climate policy framework should be developed after the Paris Agreement to better support transformative change in the energy-intensive industries.  相似文献   
53.
54.
Within the German Tropospheric Research Programme (TFS) numerous kinetic and mechanistic studies on the tropospheric reaction/degradation of the following reactants were carried out: oxygenated VOC, aromatic VOC, biogenic VOC, short-lived intermediates, such as alkoxy and alkylperoxy radicals.At the conception of the projects these selected groups were classes of VOC or intermediates for which the atmospheric oxidation mechanisms were either poorly characterised or totally unknown. The motivation for these studies was the attainment of significant improvements in our understanding of the atmospheric chemical oxidation processes of these compounds, particularly with respect to their involvement in photooxidant formation in the troposphere. In the present paper the types of experimental investigations performed and the results obtained within the various projects are briefly summarised. The major achievements are highlighted and discussed in terms of their contribution to improving our understanding of the chemical processes controlling photosmog formation in the troposphere.  相似文献   
55.
Lower Palaeogene extrusive igneous rocks of the Faroe Islands Basalt Group (FIBG) dominate the Faroese continental margin, with flood basalts created at the time of breakup and separation from East Greenland extending eastwards into the Faroe‐Shetland Basin. This volcanic succession was emplaced in connection with the opening of the NE Atlantic; however, consensus on the age and duration of volcanism remains lacking. On the Faroe Islands, the FIBG comprises four main basaltic formations (the pre‐breakup Lopra and Beinisvørð formations, and the syn‐breakup Malinstindur and Enni formations) locally separated by thin intrabasaltic sedimentary and/or volcaniclastic units. Offshore, the distribution of these formations remains ambiguous. We examine the stratigraphic framework of these rocks on the Faroese continental margin combining onshore (published) outcrop information with offshore seismic‐reflection and well data. Our results indicate that on seismic‐reflection profiles, the FIBG can be informally divided into lower and upper seismic‐stratigraphic packages separated by the strongly reflective A‐horizon. The Lower FIBG comprises the Lopra and Beinisvørð formations; the upper FIBG includes the Malinstindur and Enni formations. The strongly reflecting A‐horizon is a consequence of the contrast in properties of the overlying Malinstindur and underlying Beinisvørð formations. Onshore, the A‐horizon is an erosional surface, locally cutting down into the Beinisvørð Formation; offshore, we have correlated the A‐horizon with the Flett unconformity, a highly incised, subaerial unconformity, within the juxtaposed and interbedded sedimentary fill of the Faroe‐Shetland Basin. We refer to this key regional boundary as the A‐horizon/Flett unconformity. The formation of this unconformity represents the transition from the pre‐breakup to the syn‐breakup phase of ocean margin development in the Faroe–Shetland region. We examine the wider implications of this correlation considering existing stratigraphic models for the FIBG, discussing potential sources of uncertainty in the correlation of the lower Palaeogene succession across the Faroe–Shetland region, and implications for the age and duration of the volcanism.  相似文献   
56.
Abstract

In this article we demonstrate that substantial gains in time can be made when using point sampling rather than contour line digitising for generation of Digital Elevation Models (DEMs). A simple sampling scheme, based on regularly distributed points, was used supplemented with points near break-lines in the terrain. An evaluation of surfaces created with three different interpolation methods at three different resolutions shows that the statistical distribution was better when using points as opposed to contours, and that the accuracy was comparable despite the much smaller amount of input data.  相似文献   
57.
Our knowledge about the glaciation history in the Russian Arctic has to a large extent been based on geomorphological mapping supplemented by studies of short stratigraphical sequences found in exposed sections. Here we present new geochronological data from the Polar Ural Mountains along with a high‐resolution sediment record from Bolshoye Shchuchye, the largest and deepest lake in the mountain range. Seismic profiles show that the lake contains a 160‐m‐thick sequence of unconsolidated lacustrine sediments. A well‐dated 24‐m‐long core from the southern end of the lake spans the last 24 cal. ka. From downward extrapolation of sedimentation rates we estimate that sedimentation started about 50–60 ka ago, most likely just after a large glacier had eroded older sediments from the basin. Terrestrial cosmogenic nuclide (TCN) exposure dating (10Be) of boulders and Optically Stimulated Luminescence (OSL) dating of sediments indicate that this part of the Ural Mountains was last covered by a coherent ice‐field complex during Marine Isotope Stage (MIS) 4. A regrowth of the glaciers took place during a late stage of MIS 3, but the central valleys remained ice free until the present. The presence of small‐ and medium‐sized glaciers during MIS 2 is reflected by a sequence of glacial varves and a high sedimentation rate in the lake basin and likewise from 10Be dating of glacial boulders. The maximum extent of the mountain glaciers during MIS 2 was attained prior to 24 cal. ka BP. Some small present‐day glaciers, which are now disappearing completely due to climate warming, were only slightly larger during the Last Glacial Maximum (LGM) as compared to AD 1953. A marked decrease in sedimentation rate around 18–17 cal. ka BP indicates that the glaciers then became smaller and probably disappeared altogether around 15–14 cal. ka BP.  相似文献   
58.
The Swedish Geotechnical Society has adopted a general methodology for risk management in geotechnical engineering projects to reduce the costs related to negative outcomes of geotechnical risks. This technical note highlights the main features of the methodology and strives to inspire the international geotechnical community to apply sensible risk management methods. In the authors’ opinion, a successful geotechnical risk management needs to be structured, be tailored to the project, and permeate the engineers’ everyday work. Then, sufficient quality can be achieved in the project with larger probability.  相似文献   
59.
SKB (Svensk Kärnbränslehantering AB) is responsible for all handling, transport and storage of the nuclear wastes outside the Swedish nuclear power stations. According to Swedish law, SKB is responsible for an R&D-programme needed to take care of the radwastes. The programme comprises, among others, a general supportive geo-scientific R&D and the Äspö Hard Rock Laboratory (HRL) for more in-situ specific tasks.

Sweden is geologically located in the Fennoscandian shield which is dominated by gneisses and granitoids of Precambrian age. The Swedish reference repository concept thus considers an excavated vault at ca. 500 m depth in crystalline rocks. In this concept (KBS-3), copper canisters with high level waste will be emplaced in deposition holes from a system of tunnels. Blocks of highly compacted swelling bentonite clay are placed in the holes leaving ample space for the canisters. At the final closure of the repository, the galleries are backfilled with a mixture of sand and bentonite. This repository design aims to make the disposal system as redundant as possible. Although the KBS-3 concept is the reference concept, alternative concepts and/or repository lay-outs are also studied. The main alternative, currently under development at SKB, is disposal in boreholes with depths of 4–5 km. The geoscientific research will to a great extent be guided by the demands posed by the performance and safety assessments, as well as the constuctability issues. Some main functions of the geological barrier are fundamental for the long-term safety of a repository. These are: bedrock mechanical stability, a chemically stable environment as well as a slow and stable groundwater flux. The main time-table for the final disposal of long-lived radioactive waste in Sweden foresees the final selection of the disposal system and site during the beginning of next decade.  相似文献   

60.
The sedimentary record of aeolian sand systems extends from the Archean to the Quaternary, yet current understanding of aeolian sedimentary processes and product remains limited. Most preserved aeolian successions represent inland sand‐sea or dunefield (erg) deposits, whereas coastal systems are primarily known from the Cenozoic. The complexity of aeolian sedimentary processes and facies variability are under‐represented and excessively simplified in current facies models, which are not sufficiently refined to reliably account for the complexity inherent in bedform morphology and migratory behaviour, and therefore cannot be used to consistently account for and predict the nature of the preserved sedimentary record in terms of formative processes. Archean and Neoproterozoic aeolian successions remain poorly constrained. Palaeozoic ergs developed and accumulated in relation to the palaeogeographical location of land masses and desert belts. During the Triassic, widespread desert conditions prevailed across much of Europe. During the Jurassic, extensive ergs developed in North America and gave rise to anomalously thick aeolian successions. Cretaceous aeolian successions are widespread in South America, Africa, Asia, and locally in Europe (Spain) and the USA. Several Eocene to Pliocene successions represent the direct precursors to the present‐day systems. Quaternary systems include major sand seas (ergs) in low‐lattitude and mid‐latitude arid regions, Pleistocene carbonate and Holocene–Modern siliciclastic coastal systems. The sedimentary record of most modern aeolian systems remains largely unknown. The majority of palaeoenvironmental reconstructions of aeolian systems envisage transverse dunes, whereas successions representing linear and star dunes remain under‐recognized. Research questions that remain to be answered include: (i) what factors control the preservation potential of different types of aeolian bedforms and what are the characteristics of the deposits of different bedform types that can be used for effective reconstruction of original bedform morphology; (ii) what specific set of controlling conditions allow for sustained bedform climb versus episodic sequence accumulation and preservation; (iii) can sophisticated four‐dimensional models be developed for complex patterns of spatial and temporal transition between different mechanisms of accumulation and preservation; and (iv) is it reasonable to assume that the deposits of preserved aeolian successions necessarily represent an unbiased record of the conditions that prevailed during episodes of Earth history when large‐scale aeolian systems were active, or has the evidence to support the existence of other major desert basins been lost for many periods throughout Earth history?  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号