首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   344篇
  免费   10篇
  国内免费   3篇
测绘学   3篇
大气科学   27篇
地球物理   85篇
地质学   144篇
海洋学   30篇
天文学   24篇
自然地理   44篇
  2024年   2篇
  2023年   3篇
  2022年   3篇
  2021年   10篇
  2020年   11篇
  2019年   5篇
  2018年   11篇
  2017年   5篇
  2016年   13篇
  2015年   7篇
  2014年   5篇
  2013年   20篇
  2012年   11篇
  2011年   12篇
  2010年   9篇
  2009年   12篇
  2008年   23篇
  2007年   14篇
  2006年   14篇
  2005年   10篇
  2004年   18篇
  2003年   10篇
  2002年   13篇
  2001年   10篇
  2000年   10篇
  1999年   4篇
  1998年   9篇
  1997年   3篇
  1996年   6篇
  1995年   3篇
  1993年   3篇
  1992年   6篇
  1991年   4篇
  1990年   5篇
  1989年   3篇
  1987年   3篇
  1986年   3篇
  1984年   6篇
  1983年   6篇
  1982年   2篇
  1981年   5篇
  1980年   2篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1971年   1篇
  1969年   1篇
排序方式: 共有357条查询结果,搜索用时 15 毫秒
251.
252.
This study presents a pre-eruptive magma storage model for the rhyodacite and andesite magmas erupted during the 3430 yBP caldera-forming eruption of Aniakchak volcano, Alaska, derived from phase equilibria experiments and petrological data. The compositions of Fe–Ti oxide pairs from the early erupted Plinian rhyodacite pumice yield core temperatures of 871–900°C, with rims up to ∼942°C, and fO2 from −10.6 to −11.8 log units. Melt inclusions entrapped in plagioclase phenocrysts have H2O contents between 3 and 5 wt%, estimated by FTIR and electron microprobe volatiles by difference methods, with no detectable CO2. Assuming water saturation, this corresponds to entrapment pressures between ∼65 and 150 MPa. Phase equilibria results reproduce the natural phase assemblages at of 95–150 MPa at 870–880°C, assuming water saturation. A mismatch in experimental versus natural glass SiO2 and Al2O3, and MELTS models for H2O-undersaturated conditions indicate that the rhyodacite may not have been H2O saturated. MELTS models with and P total of 125–150 MPa at 870–880°C reproduce the natural groundmass glass Al2O3 composition best, indicating the magma may have been slightly H2O undersaturated. Those pressures correspond to storage at 4.5–5.4 km depth in the crust. MELTS models and VBD estimates from melt inclusions in titanomagnetite grains from the andesite indicate pre-eruptive conditions of ∼1,000°C and > 110 MPa, corresponding to a minimum residence depth of ∼4.1 km assuming water saturation or greater if the magma was H2O undersaturated. Previous geochemical studies indicate separate histories of the two magmas, though they retain some evidence that they are ultimately related through fractional crystallization processes. Analogous to the 1912 Novarupta magmas, the rhyodacite and andesite presumably originated within the same crystal mush zone beneath the edifice, yet were separated laterally and underwent different degrees of crustal assimilation. The andesite must have resided in close proximity, with ascent occurring in response to movement of the rhyodacite, and resulting in extensive syn-eruptive mingling.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   
253.
High-concentration saltwaters occur in many places in the regional Chalk aquifers of North-West Europe; to investigate deep occurrences, profiles of interstitial porewater chemistry have been studied from three 250–450m deep cores drilled in the eastern parts of Zealand, Denmark. At the studied location, saline water in the Chalk resides at depths from 40 to 80m and salinity increases with depth. Concentrations of chloride up to ca. 30,000ppm have been observed at depths of 400m. Measured vertical hydraulic heads in open boreholes suggest that advective groundwater flow is now restricted in deeper parts of the Chalk formation and diffusive transport is thus the predominant transport mechanism. Laboratory-measured porosity and effective diffusion coefficients were used as input to a numerical 1D diffusion model of the interface between freshwater in an upper, fractured aquifer and modified connate formation water below. The model satisfactorily simulated the observed chloride and δ18O profiles. The diffusive refreshening of the Chalk formation has been going on for about 0.9 million years. The connate water in the Chalk of parts of the sedimentary basin seems to have been modified by transport of saltwater from underlying Mesozoic and Paleozoic sediments during compaction, which presumably ceased around 4 million years ago.  相似文献   
254.
This study focuses on the retrograde rheological and chemical evolution of quartz and the behaviour of quartzites during retrograde metamorphism following dry high grade metamorphism at 750°C, 7 kbar. SEM-CL and LA-HR-ICP-MS are applied to document quartz texture and chemistry, respectively. Four generations of quartz were distinguished by SEM-CL; Qz1, Qz2, Qz3 and Qz4. Qz1, brecciated and partly dissolved old grains, is enriched in B, Al and Ti when compared with the other types. Qz2, formed during brecciation and partial dissolution of Qz1, has low Al contents (<50 ppm) but, due to rutile inclusions, variable Ti contents when occurring in amphibolite (210–10 ppm) but more consistent values when occurring in quartzites (peak value 32 ppm). Qz3, dark grey luminescent quartz forming fluid migration channels (fluid pathways), has Ti < 5 ppm and Al contents below 10 ppm and B < 1 ppm. Qz4, comprises are group of quartz later than Qz3 filling micron thick cracks and pods with very low luminescent quartz, i.e. darker than Qz3. The textural and chemical evolution of quartz in our study is explained by two major influxes of aqueous fluids during regional uplift and retrogression. They facilitated rehydration and recrystallisation in the otherwise dry high grade quartzites. The first introduction of aqueous fluids was associated with brecciation of the high grade quartz (Qz1) and dissolution/precipitation of quartz (Qz2). Ti in quartz geothermometry (Wark and Watson, Contrib Mineral Petrol 152(6):637–652) gives 626°C in agreement with the retrograde PT-path deduced from phase diagrams. Later fluid influx associated with scapolitisation of amphibolite caused localised recrystallisation (Qz3) and alteration of biotite to muscovite along mm-wide fluid migration channels. During subsequent deformation, Qz3 deformed plastically and recovered by subgrain rotation recrystallisation (SGR), resulting in a reduction of grain size, whereas Qz1 quartz formed micro faults. Qz2 was plastic but did not experience SGR to the same degree as Qz3 quartz. Increased plasticity and recovery rates most likely relate to an increased H2O fugacity and the depletion in trace elements of the quartz lattice by promoting strain softening processes dislocation climb and recovery. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
255.
The Hekla eruption cloud on 26–27 February 2000 was the first volcanic cloud to be continuously and completely monitored advecting above Iceland, using the C-band weather radar near the Keflavík international airport. Real-time radar observations of the onset, advection, and waning of the eruption cloud were studied using time series of PPI (plan-position indicator) radar images, including VMI normal, Echotop, and Cappi level 2 displays. The reflectivity of the entire volcanic cloud ranges from 0 to >60 dBz. The eruption column above the vent is essentially characterised by VMI normal and Cappi level 2 values, >30 dBz, due to the dominant influence of lapilli and ash (tephra) on the overall reflected signal. The cloud generated by the column was advected downwind to the north-northeast. It is characterised by values between 0 and 30 dBz, and the persistence of these reflections likely result from continuing water condensation and freezing on ash particles. Echotop radar images of the eruption onset document a rapid ascent of the plume head with a mean velocity of ~30 to 50 m s–1, before it reached an altitude of ~11–12 km. The evolution of the reflected cloud was studied from the area change in pixels of its highly reflected portions, >30 dBz, and tied to recorded volcanic tremor amplitudes. The synchronous initial variation of both radar and seismic signals documents the abrupt increase in tephra emission and magma discharge rate from 18:20 to 19:00 UTC on 26 February. From 19:00 the >45 dBz and 30–45 dBz portions of the reflected cloud decrease and disappear at about 7 and 10.5 h, respectively, after the eruption began, indicating the end of the decaying explosive phase. The advection and extent of the reflected eruption cloud were compared with eyewitness accounts of tephra fall onset and the measured mass of tephra deposited on the ground during the first 12 h. Differences in the deposit map and volcanic cloud radar map are due to the fact that the greater part of the deposit originates by fallout off the column margins and from the base of the cloud followed by advection of falling particle in lower level winds.Editorial responsibility: P. Mouginis-Mark  相似文献   
256.
257.
High-molecular-weight, nondialyzable polyphloroglucinols from the marine brown algae Ascophyllum nodosum and Fucus vesiculosus (Phaeophyceae, Fucales) chelate the divalent metal ions Sr2+, Mg2+, Ca2+, Be2+, Mn2+, Cd2+, Co2+, Zn2+, Ni2+, Pb2+ and Cu2+ in weakly acidic aqueous solution. Values of the relative selectivity coefficients k have been calculated relative to Mn2+; the ionotropic series with the algal polyphenols are similar to those with catechol and pyrogallol. These studies may serve as a guide for the examination of metal chelation by brown algal polyphenols both in situ and after exudation into seawater.  相似文献   
258.
We experimentally studied the dacitic magma ejected during the first event in the Usu 2000 eruption to investigate the conditions of syneruptive magmatic ascent. Geophysical data revealed that the magma reached under West Nishiyama, the location of the event’s craters, after rising beneath the summit. Prior study of bubble-size distributions of ejecta shows two stages (stage 1 and stage 2) with different magma ascent rates, as the magma accelerated beneath West Nishiyama with the start of the second stage. To simulate ascent of stage 1 from the main reservoir, which was located at a depth of 4–6 km (125 MPa) to 2 km (50 MPa) beneath West Nishiyama, decompression experiments were conducted isothermally at 900°C following two paths. Single step decompression (SSD) samples were decompressed rapidly (0.67 MPa/s) to their final pressure and held for 12 to 144 hours. Multiple step decompression (MSD) samples were decompressed stepwise to their final pressure and quenched instantly. In MSD, the average decompression rates and total experimental durations varied between 0.01389 to 0.00015 MPa/s and 1.5 to 144 hours, respectively. Syneruptive crystallization was confined to stage 1, and the conditions of ascent were determined by documenting similarities in decompression-induced crystallization between ejecta and experiments. Core compositions, number densities, and shapes of experimental microlites indicate that ascent to 2 km depth occurred in less than 1.5 h. Volumes and number densities of experimental microlites from the SSD experiments that best replicate the decompression rate to 2 km indicate that the magma remained at 2 km for approximately 24 h before the eruption. Stagnation at a depth of 2 km corresponds with horizontal transport through a dike from beneath the summit to West Nishiyama, according to geodetic results. The total magma transport timescale including stage 2 is tens of hours and is shorter than the timescale of precursory seismicity (3.5 days), indicating that the erupted magma did not move out of the reservoir for the first 2 days. This is consistent with the temporal change in numbers of earthquakes, which reached a peak after 2 days.  相似文献   
259.
A new way of implementing radiation boundary conditions in finite difference schemes is reported. Instead of prescribing the incident field at the model boundary, waves are generated inside the model boundary. All outgoing waves are absorbed at open boundaries using so-called “sponge” layers.  相似文献   
260.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号