首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   0篇
地球物理   3篇
地质学   8篇
海洋学   1篇
天文学   51篇
自然地理   1篇
  2020年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   3篇
  2011年   1篇
  2010年   3篇
  2009年   6篇
  2008年   1篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1997年   6篇
  1995年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
41.
The LASCO-C2 coronagraph aboard the SOHO solar observatory has been providing a continuous flow of coronal images since 1996. Synoptic maps for each Carrington rotation have been built from these images, and offer a global view of the temporal evolution of the solar corona, particularly the occurrence of transient events. Coronal Mass Ejections (CMEs) present distinct signatures thus offering a novel approach to the problem of their identification and characterization. We present in this article an automated method of detection based on their morphological appearance on synoptic maps. It is based on adaptive filtering and segmentation, followed by merging with high-level knowledge. The program builds a catalog which lists the CMEs detected for each Carrington Rotation, together with their main estimated parameters: time of appearance, position angle, angular extent, average velocity and intensity. Our final catalog LASCO-ARTEMIS (Automatic Recognition of Transient Events and Marseille Inventory from Synoptic maps) is compared with existing catalogs, CDAW, CACTUS and SEEDS. We find that, likewise the automated CACTUS and SEEDS catalogs, we detect many more events than the CDAW catalog which is based on visual detection. The total number of detected CMEs strongly depends upon the sensitivity to small, faint and numerous events.  相似文献   
42.
The newly developed C1 coronagraph as part of the Large-Angle Spectroscopic Coronagraph (LASCO) on board the SOHO spacecraft has been operating since January 29, 1996. We present observations obtained in the first three months of operation. The green-line emission corona can be made visible throughout the instrument's full field of view, i.e., from 1.1 R⊙ out to 3.2 R⊙ (measured from Sun center). Quantitative evaluations based on calibrations cannot yet be performed, but some basic signatures show up even now: (1) There are often bright and apparently closed loop systems centered at latitudes of 30° to 45° in both hemispheres. Their helmet-like extensions are bent towards the equatorial plane. Farther out, they merge into one large equatorial ‘streamer sheet’ clearly discernible out to 32 R⊙. (2) At mid latitudes a more diffuse pattern is usually visible, well separated from the high-latitude loops and with very pronounced variability. (3) All high-latitude structures remain stable on time scales of several days, and no signature of transient disruption of high-latitude streamers was observed in these early data. (4) Within the first 4 months of observation, only one single ‘fast’ feature was observed moving outward at a speed of 70 km s-1 close to the equator. Faster events may have escaped attention because of data gaps. (5) The centers of high-latitude loops are usually found at the positions of magnetic neutral lines in photospheric magnetograms. The large-scale streamer structure follows the magnetic pattern fairly precisely. Based on our observations we conclude that the shape and stability of the heliospheric current sheet at solar activity minimum are probably due to high-latitude streamers rather than to the near-equatorial activity belt. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1004948913883  相似文献   
43.
Résumé

Entre les moraines frontales du « Complexe des moraines internes» (Würm) bien représentées à l’ouest de Lyon (vallum morainique de Grenay et de Lagnieu) et les massifs alpins des Alpes bernoises et du Valais, aucun are morainïque majeur, pouvant marquer un ou plusieurs stades de stabilité du front glaciaire au COurs du retrait, n’ est bien individualisé. Seule une moraine de fond est reconnue, recouverte localement d’unités sédimentaires en position supra-moraini- °iUe donc contemporaines de la fonte glaciaire. Leur faciès et leur position dans la topographie montrent qu’il s’agit de formations déposées en marge du glacier, principalement dans les lacs juxta-glaciaires, au cours de la fonte progressive sur place, de culots indépendants constitués de glace rendue « morte » par un manque d’alimentation de l’amont. L’étagement de ces formations sur les versants des bassins topographiques permet de proposer 3 stades de l’évolution paléogéographique de la fonte du glacier würmien.  相似文献   
44.
In addition to an unprecedented number of Kreutz sungrazing comets, the LASCO coronagraphs have discovered some 238 unrelated “sunskirting” comets over the 12 years from 1996 to 2008. This new class is organized in several groups, and at least two comets have further been found periodic. This article presents the photometry and the heliocentric light curves of these 238 sunskirting comets. The bulk of them exhibit a continuous increase of the brightness as the comet approaches the Sun, reach a peak before perihelion and then progressively fade with a large variety of brightness gradients. However some of them have peak brightness either at or post-perihelion, whereas a quite large number are approximately flat. Likewise for the sungrazers, we find a color effect prominent between 8 and 40R (solar radii) which we interpret as resulting from the emission lines of the Na I doublet (D lines). We finally characterize the different groups of sunskirters on the basis of their cumulative distribution function of the peak brightness and of their fragmentation history.  相似文献   
45.
The ARTEMIS-I catalog of coronal mass ejections (CMEs) was initially developed on a first generation of low-resolution synoptic maps constructed from the SOHO/LASCO-C2 images of the K-corona and resulted in an online database listing all events detected since January 1996 (Boursier et al., Solar Phys. 257, 125, 2009). A new generation of synoptic maps with higher temporal (a factor of 1.5) and angular (a factor of 2.5) resolutions allowed us to reconsider the question of CME detection and resulted in the production of a new catalog: ARTEMIS-II. The parameters estimated for each detected CME are still the date and time of appearance, the position angle, the angular width, and (when detected at several solar distances) the global and median velocities. The new synoptic maps correct for the limited number of velocity determinations reported in the ARTEMIS-I catalog. We now determine the propagation velocity of 79 % of detected CMEs instead of 30 % in the previous version. A final major improvement is the estimation of the mass and kinetic energy of all CMEs for which we could determine the velocity, that is ≈?13?000 CMEs until December 2010. Individual comparisons of velocity determination of 23 CMEs for which a full three-dimensional kinematical solution has been published indicate that ARTEMIS-II performs extremely well except at the highest velocities, an intrinsic limitation of our method. Finally, individual comparisons of mass determination of seven CMEs for which a robust solution has been obtained from stereographic observations demonstrate the quality of the ARTEMIS-II results.  相似文献   
46.
The Kreutz sungrazing family of comets is unique because of its small perihelion distance and because of the large number of known members of this family. SOHO/LASCO coronagraph observations beginning in 1996 have revealed an unprecedented number of Kreutz comets. These new coronagraph observations improve upon earlier observations because of a larger field-of-view, increased image cadence, and better photometric measurements. This paper presents the lightcurves of the 141 Kreutz family comets observed from 1996 through 1998. Throughout this period, the number of family members discovered each year is shown to be constant. None of the comets were detected postperihelion. The lightcurves show distinctive characteristics which reveal much about the properties of the nuclei. It is shown that the individual fragments can be related to one of two “standard candles,” which we call Universal Curves. The comets all reach a peak brightness at one of two characteristic distances (both near 12 R) and that the comets fragment at another characteristic distance (about 7 R). Also, evidence is seen for line emission, which varies with heliocentric distance.  相似文献   
47.
Dryer  M.  Andrews  M. D.  Aurass  H.  DeForest  C.  Galvin  A. B.  Garcia  H.  Ipavich  F. M.  Karlický  M.  Kiplinger  A.  Klassen  A.  Meisner  R.  Paswaters  S. E.  Smith  Z.  Tappin  S. J.  Thompson  B. J.  Watari  S. I.  Michels  D. J.  Brueckner  G. E.  Howard  R. A.  Koomen  M. J.  Lamy  P.  Mann  G.  Arzner  K.  Schwenn  R. 《Solar physics》1998,181(1):159-183
The first X-class flare in four years occurred on 9 July 1996. This X2.6/1B flare reached its maximum at 09:11 UT and was located in active region 7978 (S10° W30°) which was an old-cycle sunspot polarity group. We report the SOHO LASCO/EIT/MDI and SOONSPOT observations before and after this event together with Yohkoh SXT images of the flare, radio observations of the type II shock, and GOES disk-integrated soft X-ray flux during an extended period that included energy build-up in this active region.The LASCO coronagraphs measured a significant coronal mass ejection (CME) on the solar west limb beginning on 8 July at about 09:53 UT. The GOES 8 soft X-ray flux (0.1–0.8 nm) had started to increase on the previous day from below the A-level background (10-8 W m-2). At the start time of the CME, it was at the mid-B level and continued to climb. This CME is similar to many events which have been seen by LASCO and which are being interpreted as disruption of existing streamers by emerging flux ropes.LASCO and EIT were not collecting data at the time of the X-flare due to a temporary software outage. A larger CME was in progress when the first LASCO images were taken after the flare. Since the first image of the 'big' CME was obtained after the flare's start time, we cannot clearly demonstrate the physical connection of the CME to the flare. However, the LASCO CME data are consistent with an association of the flare and the CME. No eruptive filaments were observed during this event.We used the flare evidence noted above to employ in real time a simplified Shock-Time-of-Arrival (STOA) algorithm to estimate the arrival of a weak shock at the WIND spacecraft. We compare this prediction with the plasma and IMF data from WIND and plasma data from the SOHO/CELIAS instrument and suggest that the flare - and possibly the interplanetary consequences of the 'big' CME - was the progenitor of the mild, high-latitude, geomagnetic storm (daily sum of Kp=16+, Ap=8) on 12 July 1996. We speculate that the shock was attenuated enroute to Earth as a result of interaction with the heliospheric current/plasma sheet.presently at High Altitude Observatory, Boulder, CO80309, U.S.A.presently at Naval Research Laboratory, Washington DC, 20375, U.S.A.  相似文献   
48.
Maia  D.  Pick  M.  Kerdraon  A.  Howard  R.  Brueckner  G. E.  Michels  D. J.  Paswaters  S.  Schwenn  R.  Lamy  P.  Llebaria  A.  Simnett  G.  Aurass  H. 《Solar physics》1998,181(1):121-132
The development of a coronal mass ejection on 1 July 1996 has been analyzed by comparing the observations of the LASCO/SOHO coronagraph with those of the Nançay radioheliograph. This comparison brings new insight and very useful diagnosis for the study of CME events. It is shown that the initial instability took place in a small volume located above an active region and that the occurrence of short radio type III bursts implies a triggering process due to magnetic field interactions. The subsequent spatial and temporal evolution of the radio emission strongly suggests that the large scale structure becomes unstable within the first minute of the event.  相似文献   
49.
Philippe L. Lamy 《Icarus》1978,34(1):68-75
Near-normal incidence reflectance measurements in the interval 1026–1640 Å were performed on four silicates already studied in the visible and infrared by Pollack et al. (1973). We use a Kramers-Kronig analysis of these data to calculate the complex index of refraction m = n ? ik. New transmission measurements improve the determination of k in the interval 2500–4500 Å, except for andesite, which is more opaque than found by Pollack et al.  相似文献   
50.
Lewis  D.J.  Simnett  G.M.  Brueckner  G.E.  Howard  R.A.  Lamy  P.L.  Schwenn  R. 《Solar physics》1999,184(2):297-315
The near-rigid rotation of the corona above the differential rotation of the photosphere has important implications for the form of the global coronal magnetic field. The magnetic reconfiguring associated with the shear region where the rigidly-rotating coronal field lines interface with the differentially-rotating photospheric field lines could provide an important energy source for coronal heating. We present data on coronal rotation as a function of altitude provided by the Large Angle Spectrometric Coronagraph (LASCO) instrument aboard the Solar and Heliospheric Observatory (SOHO) spacecraft. LASCO comprises of three coronagraphs (C1, C2, and C3) with nested fields-of-view spanning 1.1 R to 30 R. An asymmetry in brightness, both of the Fexiv emission line corona and of the broad-band electron scattered corona, has been observed to be stable over at least a one-year period spanning May 1996 to May 1997. This feature has presented a tracer for the coronal rotation and allowed period estimates to be made to beyond 15R, up to 5 times further than previously recorded for the white-light corona. The difficulty in determining the extent of differential motion in the outer corona is demonstrated and latitudinally averaged rates formed and determined as a function of distance from the Sun. The altitude extent of the low latitude closed coronal field region is inferred from the determined rotation periods which is important to the ability of the solar atmosphere to retain energetic particles. For the inner green line corona (<2 R) we determine a synodic rotation period of (27.4±0.1) days, whereas, for the outer white- light corona, (>2.5 R) we determine a rotation period of (27.7±0.1) days.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号