首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43459篇
  免费   1694篇
  国内免费   1088篇
测绘学   1225篇
大气科学   3492篇
地球物理   9907篇
地质学   16048篇
海洋学   3742篇
天文学   8623篇
综合类   433篇
自然地理   2771篇
  2022年   290篇
  2021年   496篇
  2020年   467篇
  2019年   534篇
  2018年   1414篇
  2017年   1286篇
  2016年   1338篇
  2015年   892篇
  2014年   1203篇
  2013年   2075篇
  2012年   1978篇
  2011年   2265篇
  2010年   1766篇
  2009年   2257篇
  2008年   1895篇
  2007年   1927篇
  2006年   1886篇
  2005年   2068篇
  2004年   1991篇
  2003年   1691篇
  2002年   1200篇
  2001年   934篇
  2000年   883篇
  1999年   703篇
  1998年   740篇
  1997年   724篇
  1996年   601篇
  1995年   570篇
  1994年   488篇
  1993年   426篇
  1992年   427篇
  1991年   399篇
  1990年   469篇
  1989年   383篇
  1988年   362篇
  1987年   447篇
  1986年   350篇
  1985年   439篇
  1984年   536篇
  1983年   455篇
  1982年   455篇
  1981年   406篇
  1980年   424篇
  1979年   361篇
  1978年   346篇
  1977年   342篇
  1976年   313篇
  1975年   298篇
  1974年   313篇
  1973年   342篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
301.
Our ability to identify thin non-stoichiometric and amorphous layers beneath mineral surfaces has been tested by undertaking X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) work on alkali feldspars from pH 1 dissolution experiments. The outcomes of this work were used to help interpret XPS and TEM results from alkali feldspars weathered for <10,000 years in soils overlying the Shap Granite (north-west England). The chemistry of effluent solutions indicates that silica-rich layers a few nanometers in thickness formed during the pH 1 experiments. These layers can be successfully identified by XPS and have lower Al/Si, Na/Si, K/Si and Ca/Si values than the outermost ∼9 nm of unweathered controls. Development of Al-Si non-stoichiometry is coupled with loss of crystal structure to produce amorphous layers that are identifiable by TEM where >∼2.5 nm thick, whereas the crystallinity of albite is retained despite leaching of Na to depths of tens to hundreds on nanometers. Integration of XPS data over the outermost 6-9 nm of naturally weathered Shap feldspars shows that they have stoichiometric Al/Si and K/Si ratios, which is consistent with findings of previous TEM work on the same material that they lack amorphous layers. There is some XPS evidence for loss of K from the outermost couple of nanometers of Shap orthoclase, and the possibility of leaching of Na from albite to greater depths cannot be excluded using the XPS or TEM results. This study demonstrates that the leached layer model, as formulated from laboratory experiments, is inapplicable to the weathering of alkali feldspars within acidic soils, which is an essentially stoichiometric reaction.  相似文献   
302.
Magnesium and strontium isotope signatures were determined during different seasons for the main rivers of the Moselle basin, northeastern France. This small basin is remarkable for its well-constrained and varied lithology on a small distance scale, and this is reflected in river water Sr isotope compositions. Upstream, where the Moselle River drains silicate rocks of the Vosges mountains, waters are characterized by relatively high 87Sr/86Sr ratios (0.7128-0.7174). In contrast, downstream of the city of Epinal where the Moselle River flows through carbonates and evaporites of the Lorraine plateau, 87Sr/86Sr ratios are lower, down to 0.70824.Magnesium in river waters draining silicates is systematically depleted in heavy isotopes (δ26Mg values range from −1.2 to −0.7‰) relative to the value presently estimated for the continental crust and a local diorite (−0.5‰). In comparison, δ26Mg values measured in soil samples are higher (∼0.0‰). This suggests that Mg isotope fractionation occurs during mineral leaching and/or formation of secondary clay minerals. On the Lorraine plateau, tributaries draining marls, carbonates and evaporites are characterized by low Ca/Mg (1.5-3.2) and low Ca/Sr (80-400) when compared to local carbonate rocks (Ca/Mg = 29-59; Ca/Sr = 370-2200), similar to other rivers draining carbonates. The most likely cause of the Mg and Sr excesses in these rivers is early thermodynamic saturation of groundwater with calcite relative to magnesite and strontianite as groundwater chemistry progressively evolves in the aquifer. δ26Mg of the dissolved phases of tributaries draining mainly carbonates and evaporites are relatively low and constant throughout the year (from −1.4‰ to −1.6‰ and from −1.2‰ to −1.4‰, respectively), within the range defined for the underlying rocks. Downstream of Epinal, the compositions of the Moselle River samples in a δ26Mg vs. 87Sr/86Sr diagram can be explained by mixing curves between silicate, carbonate and evaporite waters, with a significant contribution from the Vosgian silicate lithologies (>70%). Temporal co-variation between δ26Mg and 87Sr/86Sr for the Moselle River throughout year is also observed, and is consistent with a higher contribution from the Vosges mountains in winter, in terms of runoff and dissolved element flux. Overall, this study shows that Mg isotopes measured in waters, rocks and soils, coupled with other tracers such as Sr isotopes, could be used to better constrain riverine Mg sources, particularly if analytical uncertainties in Mg isotope measurements can be improved in order to perform more precise quantifications.  相似文献   
303.
Variations in sulfur mineralogy and chemistry of serpentinized peridotites and gabbros beneath the Lost City Hydrothermal Field at the southern face of the Atlantis Massif (Mid-Atlantic Ridge, 30°N) were examined to better understand serpentinization and alteration processes and to study fluid fluxes, redox conditions, and the influence of microbial activity in this active, peridotite-hosted hydrothermal system. The serpentinized peridotites are characterized by low total sulfur contents and high bulk δ34S values close to seawater composition. Low concentrations of 34S-enriched sulfide phases and the predominance of sulfate with seawater-like δ34S values indicate oxidation, loss of sulfide minerals and incorporation of seawater sulfate into the serpentinites. The predominance of pyrite in both serpentinites and gabbros indicates relatively high fO2 conditions during progressive serpentinization and alteration, which likely result from high fluid fluxes during hydrothermal circulation and evolution of the Lost City system from temperatures of ∼250 to 150 °C. Sulfate and sulfide minerals in samples from near the base of hydrothermal carbonate towers at Lost City show δ34S values that reflect the influence of microbial activity. Our study highlights the variations in sulfur chemistry of serpentinized peridotites in different marine environments and the influence of long-lived, moderate temperature peridotite-hosted hydrothermal system and high seawater fluxes on the global sulfur cycle.  相似文献   
304.
In-situ uplifted portions of oceanic crust at the central dome of the Atlantis Massif (Mid-Atlantic Ridge, 30°N) were drilled during Expeditions 304 and 305 of the Integrated Ocean Drilling Program (IODP) and a 1.4 km section of predominantly gabbroic rocks with minor intercalated ultramafic rocks were recovered. Here we characterize variations in sulfur mineralogy and geochemistry of selected samples of serpentinized peridotites, olivine-rich troctolites and diverse gabbroic rocks recovered from Hole 1309D. These data are used to constrain alteration processes and redox conditions and are compared with the basement rocks of the southern wall of the Atlantis Massif, which hosts the Lost City Hydrothermal Field, 5 km to the south. The oceanic crust at the central dome is characterized by Ni-rich sulfides reflecting reducing conditions and limited seawater circulation. During uplift and exhumation, seawater interaction in gabbroic-dominated domains was limited, as indicated by homogeneous mantle-like sulfur contents and isotope compositions of gabbroic rocks and olivine-rich troctolites. Local variations from mantle compositions are related to magmatic variability or to interaction with seawater-derived fluids channeled along fault zones. The concomitant occurrence of mackinawite in olivine-rich troctolites and an anhydrite vein in a gabbro provide temperature constraints of 150-200 °C for late circulating fluids along local brittle faults below 700 m depth. In contrast, the ultramafic lithologies at the central dome represent domains with higher seawater fluxes and higher degrees of alteration and show distinct changes in sulfur geochemistry. The serpentinites in the upper part of the hole are characterized by high total sulfide contents, high δ34Ssulfide values and low δ34Ssulfate values, which reflect a multistage history primarily controlled by seawater-gabbro interaction and subsequent serpentinization. The basement rocks at the central dome record lower oxygen fugacities and more limited fluid fluxes compared with the serpentinites and gabbros of the Lost City hydrothermal system. Our studies are consistent with previous results and indicate that sulfur speciation and sulfur isotope compositions of altered oceanic mantle sequences commonly evolve over time. Heterogeneities in sulfur geochemistry reflect the fact that serpentinites are highly sensitive to local variations in fluid fluxes, temperature, oxygen and sulfur fugacities, and microbial activity.  相似文献   
305.
Kalahari 008 and 009 are two lunar meteorites that were found close to each other in Botswana. Kalahari 008 is a typical lunar anorthositic breccia; Kalahari 009 a monomict breccia with basaltic composition and mineralogy. Based on minor and trace elements Kalahari 009 is classified as VLT (very-low-Ti) mare basalt with extremely low contents of incompatible elements, including the REE. The Lu-Hf data define an age of 4286 ± 95 Ma indicating that Kalahari 009 is one of the oldest known basalt samples from the Moon. It provides evidence for lunar basalt volcanism prior to 4.1 Ga (pre-Nectarian) and may represent the first sample from a cryptomare. The very radiogenic initial 176Hf/177Hf (εHf = +12.9 ± 4.6), the low REE, Th and Ti concentrations indicate that Kalahari 009 formed from re-melting of mantle material that had undergone strong incompatible trace element depletion early in lunar history. This unusually depleted composition points toward a hitherto unsampled basalt source region for the lunar interior that may represent a new depleted endmember source for low-Ti mare basalt volcanism. Apparently, the Moon became chemically very heterogeneous at an early stage in its history and different cumulate sources are responsible for the diverse mare basalt types.Evidence that Kalahari 008 and 009 may be paired includes the similar fayalite content of their olivine, the identical initial Hf isotope composition, the exceptionally low exposure ages of both rocks and the fact that they were found close to each other. Since cryptomaria are covered by highland ejecta, it is possible that these rocks are from the boundary area, where basalt deposits are covered by highland ejecta. The concentrations of cosmogenic radionuclides and trapped noble gases are unusually low in both rocks, although Kalahari 008 contains slightly higher concentrations. A likely reason for this difference is that Kalahari 008 is a polymict breccia containing a briefly exposed regolith, while Kalahari 009 is a monomict brecciated rock that may never have been at the surface of the Moon.Altogether, the compositions of Kalahari 008 and 009 permit new insight into early lunar evolution, as both meteorites sample lunar reservoirs hitherto unsampled by spacecraft missions. The very low Th and REE content of Kalahari 009 as well as the depletion in Sm and the lack of a KREEP-like signature in Kalahari 008 point to a possible source far from the influence of the Procellarum-KREEP Terrane, possibly the lunar farside.  相似文献   
306.
Establishing the petrogenesis of volcanic and plutonic rocksis a key issue in unraveling the evolution of distinct subduction-relatedtectonic phases occurring along the South American margin. Thisis particularly true for Cenozoic times when large volumes ofmagma were produced in the Andean belt. In this study we havefocused on Oligo-Miocene magmatism in central Chile at 33°S.Our data include field and petrographic observations, whole-rockmajor and trace element analyses, U–Pb zircon dating,and Pb, Sr, and Hf isotope analyses of plagioclase, clinopyroxene,and zircon mineral separates. Combined with earlier dating resultsthe new zircon ages define a 28·8–5·2 Maperiod of plutonic and volcanic activity that ceased as a consequenceof flattening subduction of the Nazca–Farallon plate.Rare earth elements patterns are variable, with up to 92 timeschondrite concentrations for light rare earth elements yielding(La/Yb)N between 3·6 and 7·0, and an absence ofEu anomalies. Initial Pb isotope signatures are in the rangeof 18·358–19·023 for 206Pb/ 204Pb, 15·567–15·700for 207Pb/ 204Pb and 38·249–39·084 for 208Pb/204Pb. Initial 87Sr/ 86Sr are mostly in the range of 0·70369–0·70505,with two more radiogenic values at 0·7066. Initial Hfisotopic compositions of zircons yield exclusively positiveHfi ranging between + 6·9 and + 9·6. The newlydetermined initial isotope characteristics of the Oligo-Miocenemagmas suggest that the mantle source lithologies are differentfrom both those of Pacific mid-ocean ridge basalt and oceanisland basalt, plotting in the field of reference values forsubcontinental lithospheric mantle, characterized by moderatelarge ion lithophile element–high field strengh elementdepletion and high 238U/ 204Pb. A Hf model age of 2 Ga is estimatedfor the formation of the subcontinental mantle–continentalcrust assemblage in the region, suggesting that the initialSr and Pb isotope ratios inferred for the source of the Oligo-Mioceneparental magmas are the result of later Rb and U enrichmentcaused by mantle metasomatism. A time-integrated model Rb/Srof 0·039 and µ 16 are estimated for the sourceof the parental magmas, consistent with ratios measured in peridotitexenoliths from continental areas. Evolution from predominant(>90%) basaltic–gabbroic to andesitic–dioriticmagmas seems to involve a combination of (1) original traceelement differences in the metasomatized subcontinental mantle,(2) different degrees of partial melting and (3) fractionalcrystallization in the garnet- and spinel-peridotite stabilityfields. The genesis of more differentiated magmas reaching rhyolitic–graniticcompositions most probably also includes additional crystalfractionation at both shallow mantle depths and within the crust,possibly leading to some very minor assimilation of crustalmaterial. KEY WORDS: calc-alkaline magmatism; Oligo-Miocene; U–Pb dating; Sr–Pb–Hf isotopes; central Chile  相似文献   
307.
The structure of anomalously uplifted areas in transverse ridges of the Vema, S o Paulo, and Romanche fracture zones is considered. It is concluded that their formation and eventual development in the present-day structure of the central Atlantic bottom proceeded during two stages. The first stage that corresponds to a short period at the Tortonian-Messinian transition (10 Ma ago) was marked by transportation of deep-seated rocks into the upper part of the lithosphere along thrust faults with mass motion in the meridional direction along the axis of the Mid-Atlantic Ridge. The second stage was characterized by contrasting highamplitude vertical movements from 10 to 3 Ma ago. It is suggested that near-meridional compression in the domains surrounding the Western Tethys in the Tortonian-Messinian resulted in deformation of the upper lithosphere within large transform fracture zones of the central Atlantic. The deformation that occurred 10 Ma ago was a manifestation of the global neotectonic epoch of the Earth.  相似文献   
308.
One of the reasons the processes resulting in As release to groundwater in southern Asia remain poorly understood is the high degree of spatial variability of physical and chemical properties in shallow aquifers. In an attempt to overcome this difficulty, a simple device that collects groundwater and sediment as a slurry from precisely the same interval was developed in Bangladesh. Recently published results from Bangladesh and India relying on the needle-sampler are augmented here with new data from 37 intervals of grey aquifer material of likely Holocene age in Vietnam and Nepal. A total of 145 samples of filtered groundwater ranging in depth from 3 to 36 m that were analyzed for As (1–1000 μg/L), Fe (0.01–40 mg/L), Mn (0.2–4 mg/L) and S (0.04–14 mg/L) are compared. The P-extractable (0.01–36 mg/kg) and HCl-extractable As (0.04–36 mg/kg) content of the particulate phase was determined in the same suite of samples, in addition to Fe(II)/Fe ratios (0.2–1.0) in the acid-leachable fraction of the particulate phase. Needle-sampler data from Bangladesh indicated a relationship between dissolved As in groundwater and P-extractable As in the particulate phase that was interpreted as an indication of adsorptive equilibrium, under sufficiently reducing conditions, across 3 orders of magnitude in concentrations according to a distribution coefficient of 4 mL/g. The more recent observations from India, Vietnam and Nepal show groundwater As concentrations that are often an order of magnitude lower at a given level of P-extractable As compared to Bangladesh, even if only the subset of particularly reducing intervals characterized by leachable Fe(II)/Fe >0.5 and dissolved Fe >0.2 mg/L are considered. Without attempting to explain why As appears to be particularly mobile in reducing aquifers of Bangladesh compared to the other regions, the consequences of increasing the distribution coefficient for As between the particulate and dissolved phase to 40 mL/g for the flushing of shallow aquifers of their initial As content are explored.  相似文献   
309.
Concentrations of atmospheric Hg species, elemental Hg (Hg°), reactive gaseous Hg (RGM), and fine particulate Hg (Hg-PM2.5) were measured at a coastal site near Weeks Bay, Alabama from April to August, 2005 and January to May, 2006. Mean concentrations of the species were 1.6 ± 0.3 ng m−3, 4.0 ± 7.5 pg m−3 and 2.7 ± 3.4 pg m−3, respectively. A strong diel pattern was observed for RGM (midday maximum concentrations were up to 92.7 pg m−3), but not for Hg° or Hg-PM2.5. Elevated RGM concentrations (>25 pg m−3) in April and May of 2005 correlated with elevated average daytime O3 concentrations (>55 ppbv) and high light intensity (>500 W m−2). These conditions generally corresponded with mixed continental-Gulf and exclusively continental air mass trajectories. Generally lower, but still elevated, RGM peaks observed in August, 2005 and January–March, 2006 correlated significantly (p < 0.05) with peaks in SO2 concentration and corresponded to periods of high light intensity and lower average daytime O3 concentrations. During these times air masses were dominated by trajectories that originated over the continent. Elevated RGM concentrations likely resulted from photochemical oxidation of Hg° by atmospheric oxidants. This process may have been enhanced in and by the near-shore environment relative to inland sites. The marine boundary layer itself was not found to be a significant source of RGM.  相似文献   
310.
Gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) were measured over 2-week seasonal field campaigns near Salmon Falls Creek Reservoir in south-central Idaho from the summer of 2005 through the fall of 2006 and over the entire summer of 2006 using automated Tekran Hg analyzers. GEM, RGM, and particulate Hg (HgP) were also measured at a secondary site 90 km to the west in southwestern Idaho during the summer of 2006. The study was performed to characterize Hg air concentrations in the southern Idaho area for the first time, estimate Hg dry deposition rates, and investigate the source of observed elevated concentrations. High seasonal variability was observed with the highest GEM (1.91 ± 0.9 ng m−3) and RGM (8.1 ± 5.6 pg m−3) concentrations occurring in the summer and lower values in the winter (1.32 ± 0.3 ng m−3, 3.2 ± 2.9 pg m−3 for GEM, RGM, respectively). The summer-average HgP concentrations were generally below detection limit (0.6 ± 1 pg m−3). Seasonally averaged deposition velocities calculated using a resistance model were 0.034 ± 0.032, 0.043 ± 0.040, 0.00084 ± 0.0017 and 0.00036 ± 0.0011 cm s−1 for GEM (spring, summer, fall and winter, respectively) and 0.50 ± 0.39, 0.40 ± 0.31, 0.51 ± 0.43 and 0.76 ± 0.57 cm s−1 for RGM. The total annual RGM + GEM dry deposition estimate was calculated to be 11.9 ± 3.3 μg m−2, or about 2/3 of the total (wet + dry) deposition estimate for the area. Periodic elevated short-term GEM (2.2–12 ng m−3) and RGM (50–150 pg m−3) events were observed primarily during the warm seasons. Back-trajectory modeling and PSCF analysis indicate predominant source directions to the SE (western Utah, northeastern Nevada) and SW (north-central Nevada) with fewer inputs from the NW (southeastern Oregon and southwestern Idaho).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号