首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43384篇
  免费   1418篇
  国内免费   966篇
测绘学   1111篇
大气科学   3532篇
地球物理   9275篇
地质学   16034篇
海洋学   3749篇
天文学   9096篇
综合类   265篇
自然地理   2706篇
  2022年   322篇
  2021年   569篇
  2020年   572篇
  2019年   581篇
  2018年   1191篇
  2017年   1171篇
  2016年   1428篇
  2015年   997篇
  2014年   1357篇
  2013年   2368篇
  2012年   1726篇
  2011年   2158篇
  2010年   1930篇
  2009年   2384篇
  2008年   1969篇
  2007年   1961篇
  2006年   1900篇
  2005年   1384篇
  2004年   1307篇
  2003年   1167篇
  2002年   1127篇
  2001年   944篇
  2000年   902篇
  1999年   734篇
  1998年   789篇
  1997年   777篇
  1996年   624篇
  1995年   621篇
  1994年   532篇
  1993年   461篇
  1992年   443篇
  1991年   416篇
  1990年   502篇
  1989年   395篇
  1988年   376篇
  1987年   476篇
  1986年   370篇
  1985年   462篇
  1984年   569篇
  1983年   482篇
  1982年   486篇
  1981年   438篇
  1980年   435篇
  1979年   377篇
  1978年   363篇
  1977年   362篇
  1976年   319篇
  1975年   313篇
  1974年   326篇
  1973年   359篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
281.
The Mordor Alkaline Igneous Complex (MAIC) is a composite intrusion comprising a body of syenite and a funnel-shaped layered mafic–ultramafic intrusion of lamprophyric parentage, the Mordor Mafic–Ultramafic Intrusion or MMUI. The MMUI is highly unusual among intrusions of lamprophyric or potassic parentage in containing primary magmatic platinum-group element (PGE)-enriched sulfides. The MMUI sequence consists largely of phlogopite-rich pyroxenitic cumulates, with an inward dipping conformable layer of olivine-bearing cumulates divisible into a number of cyclic units. Stratiform-disseminated sulfide accumulations are of two types: disseminated layers at the base of cyclic units, with relatively high PGE tenors; and patchy PGE-poor disseminations within magnetite-bearing upper parts of cyclic units. Sulfide-enriched layers at cycle bases contain anomalous platinum group element contents with grades up to 1.5 g/t Pt+Pd+Au over 1-m intervals, returning to background values of low parts per billion (ppb) on a meter scale. They correspond to reversals in normal fractionation trends and are interpreted as the result of new magma influxes into a continuously replenished magma chamber. Basal layers have decoupled Cu and PGE peaks reflecting increasing PGE tenors up-section, due to increasing R factors during the replenishment episode, or progressive mixing of between resident PGE-poor magma and more PGE-enriched replenishing magma. The presence of PGE enriched sulfides in cumulates from a lamprophyric magma implies that low-degree partial melts do not necessarily leave sulfides and PGEs in the mantle restite during partial melting. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
282.
Chihuahueños Bog (2925 m) in the Jemez Mountains of northern New Mexico contains one of the few records of late-glacial and postglacial development of the mixed conifer forest in southwestern North America. The Chihuahueños Bog record extends to over 15,000 cal yr BP. An Artemisia steppe, then an open Picea woodland grew around a small pond until ca. 11,700 cal yr BP when Pinus ponderosa became established. C/N ratios, δ13C and δ15N values indicate both terrestrial and aquatic organic matter was incorporated into the sediment. Higher percentages of aquatic algae and elevated C/N ratios indicate higher lake levels at the opening of the Holocene, but a wetland developed subsequently as climate warmed. From ca. 8500 to 6400 cal yr BP the pond desiccated in what must have been the driest period of the Holocene there. C/N ratios declined to their lowest Holocene levels, indicating intense decomposition in the sediment. Wetter conditions returned after 6400 cal yr BP, with conversion of the site to a sedge bog as groundwater levels rose. Higher charcoal influx rates after 6400 cal yr BP probably result from greater biomass production rates. Only minor shifts in the overstory species occurred during the Holocene, suggesting that mixed conifer forest dominated throughout the record.  相似文献   
283.
Structural, petrographic and geochronologic studies of the Kampa Dome provide insights into the tectonothermal evolution of orogenic crust exposed in the North Himalayan gneiss domes of southern Tibet. U–Pb ion microprobe dating of zircons from granite gneiss exposed at the deepest levels within the dome yields concordia 206Pb/238U age populations of 506 ± 3 Ma and 527 ± 6 Ma, with no evidence of new zircon growth during Himalayan orogenesis. However, the granite contains penetrative deformation fabrics that are also preserved in the overlying Paleozoic strata, implying that the Kampa granite is a Cambrian pluton that was strongly deformed and metamorphosed during Himalayan orogenesis. Zircons from deformed leucogranite sills that cross-cut Paleozoic metasedimentary rocks yield concordant Cambrian ages from oscillatory zoned cores and discordant ages ranging from ca. 491–32 Ma in metamict grains. Since these leucogranites clearly post-date the metasedimentary rocks they intrude, the zircons are interpreted as xenocrysts that are probably derived from the Kampa granite. The Kampa Dome formed via a series of progressive orogenic events including regional ~ N–S contraction and related crustal thickening (D1), predominately top-to-N ductile shearing and crustal extension (D2), top-to-N brittle–ductile faulting and related folding on the north limb of the dome, localized top-to-S faulting on the southern limb of the dome, and crustal doming (D3), and continued N–S contraction, E–W extension and doming (D4). Structural and geochronologic variability amongst adjacent North Himalayan gneiss domes may reflect changes in the magnitude of crustal exhumation along the North Himalayan antiform, possibly relating to differences in the mid-crustal geometry of the exhuming fault systems.  相似文献   
284.
The Scandinavian Caledonides have been viewed as resulting from either a single Silurian (i.e. Scandian) event or from polycyclic orogenies involving several collisions on the margin of Baltica. Early studies of the Kalak Nappe Complex (KNC) in Finnmark, Arctic Norway, led to the hypothesis of an Early Cambrian-Early Ordovician (520-480 Ma) Finnmarkian Orogeny, though the nature of this tectonic event remains enigmatic. In this contribution we have employed in situ UV laser ablation Ar-Ar dating of fine-grained phyllite and schist from the eastern Caledonides of Arctic Norway to investigate the presence of pre-Scandian tectonometamorphic events. U-Th-Pb detrital zircon and whole rock Sm-Nd analyses have been used to test the regional stratigraphic correlations of these metasedimentary rocks. These results indicate that the Berlevåg Formation within the Tanafjord Nappe, previously assumed to be part of the KNC, was deposited after 1872 Ma and prior to a low temperature hydrothermal event at 555 ± 15 Ma. It has a likely provenance on the Baltica continent, lacks any Grenville-Sveconorwegian detrital zircons, and thus cannot be part of the KNC which contains abundant detritus in this age range. Instead the Berlevåg Formation is interpreted as part of the Laksefjord Nappe Complex, which structurally underlies the KNC. Laser-ablation argon-argon dating also shows that late Caledonian (i.e. Scandian) tectonometamorphism affected both the KNC and its immediate footwall at c. 425 ± 15 Ma. This is corroborated by a step-heating argon-argon muscovite age of 424 ± 3 Ma which is interpreted as dating cooling. However, within two samples from the KNC, an earlier (Middle-Late Cambrian) metamorphic event is also recorded. A biotite-grade schist yielded an Ar-Ar inverse isochron age of 506 ± 17 Ma from whole rock surfaces, in which the mineral domains are too fine-grained to date individually. An early generation of muscovite from a coarser-grained amphibolite-facies sample yielded an inverse isochron of 498 ± 13 Ma. Both isochron ages have atmospheric argon intercept values. Previous studies have documented similar Cambrian ages in the Caledonian nappes below the KNC. These results suggest correlative tectonometamorphic events in the eastern KNC and its footwall at c. 500 Ma. This Cambrian event may reflect the arrival of the Kalak Nappe Complex as a previously constructed exotic mobile belt onto the margin of Baltica. Combined with recent studies from the western Kalak Nappe Complex, the results do not support the traditional constraint on the Finnmarkian Orogeny sensu stricto. However they vindicate classic tectonic models involving a Cambrian accretion event.  相似文献   
285.
This paper discusses issues of the decline of the reservoir properties of arenaceous-argillaceous rocks as a result of declining porosity due to long-term operation of underground gas storage facilities. An analysis of the many-year operation of storage facilities, as well as calculation, has revealed that the active capacity of a storage reservoir gradually decreases under certain conditions of underground storage operations. We performed a series of experiments with model specimens in order to support the hypothesis of decreasing reservoir (capacity-filtration) properties because of changes in the value and structure of the pore space. These experiments showed that the cyclic loading and unloading of arenaceous-silty rocks during long-term operation of underground gas storage facilities can significantly decrease the reservoir parameters of reservoirs created within worked out gas-and-gas condensate fields. Laboratory studies of model specimens corresponding to feldspar sandstone in their composition, porosity, and strength proved that porosity considerably decreases in such reservoirs at actually existing values of formation pressure. Tests of sand performed under conditions close to those existing during the development of hydrocarbon fields also showed that their permeability gradually decreases in the process of cyclic changes of effective pressure.  相似文献   
286.
Mining of Cenozoic alluvial deposits at Copeton and Bingara (Eastern Australia) has produced two million macrodiamonds (0.25 ct median size). Raman spectroscopy is used to identify included minerals within uncut Copeton diamonds, with sealed chamber remnant pressures of 31.7 to 35.6 kbar for coesite, 13.6 and 22.7 kbar for clinopyroxene, and 7.6 kbar for grossular garnet. Assuming elastic behaviour, these values generate inclusion entrapment PT loci which intersect, restricting diamond formation conditions: from 250 °C, 43 kbar to 800 °C, 52 kbar. Larger than error (± 100 °C and ± 4 kbar), this range shows a systematic variation in inclusion composition with diamond zoning and N properties. Published research shows 1) Copeton and Bingara diamonds are unique, and 2) modern alluvium in the Bingara district carries mantle-formed garnet, captured by post-tectonic alkali basalt from an extensive diamondiferous ultrahigh pressure (UHP) terrane that stalled at depth because it is dominated by mafic eclogite. The combined Raman and geological results indicate two sets of subduction UHP diamond formation conditions/protolith are required, firstly cooler oceanic slab and secondly including higher temperature continental crust. The Copeton and Bingara stones are UHP macrodiamonds, and Carboniferous 40Ar/39Ar age dates on clinopyroxene inclusions should be interpreted as ages of crystallisation, representing the termination of subduction. The characteristic features of ruptured inclusions and etched percussion marks on Copeton and Bingara diamond indicate volcanic delivery to the earth's surface. Alluvial deposits elsewhere in Eastern Australia may carry similar diamond along with diamond of different origin.  相似文献   
287.
Realizing the importance of aerosol physical properties at the adjoining continental and coastal locations in the airmass pathways onto the oceanic region, extensive measurements of aerosol physical properties were made at Visakhapatnam (17.7°N, 83.3°E), an eastern coastal location in peninsular India during the ICARB period. The temporal variations of aerosol optical depth, near surface aerosol mass size distributions and BC mass concentrations show significantly higher aerosol optical depth and near surface mass concentrations during the first and last weeks of April 2007. The mean BC mass fraction in the fine mode aerosol was around 11%. The aerosol back scatter profiles derived from Micro Pulse Lidar indicate a clear airmass subsidence on the days with higher aerosol optical depths and near surface mass fraction. A comparison of the temporal variation of the aerosol properties at Visakhapatnam with the MODIS derived aerosol optical depth along the cruise locations indicates a resemblance in the temporal variation suggesting that the aerosol transport from the eastern coastal regions of peninsular India could significantly affect the aerosol optical properties at the near coastal oceanic regions and that the affect significantly reduced at the farther regions.  相似文献   
288.
In this paper, we report observations of unusual whistlers recorded at Jammu (geomag. lat. = 22°26′N; L = 1.17), India on March 8, 1999 during the daytime. They are interpreted as one-hop ducted whistlers having propagated along higher L-values in closely spaced narrow ducts from the opposite hemispheres. After leakage from the duct, the waves might have propagated in the earth-ionosphere waveguide towards the equator in surface mode. Tentative explanation of the dynamic spectra of these events is briefly presented.  相似文献   
289.
内蒙古敖包吐萤石矿床的Sr、Nd、Pb同位素地球化学特征   总被引:2,自引:1,他引:1  
敖包吐萤石矿床是内蒙古北部苏莫查干地区单一萤石矿集区中的一个代表性矿床,产于早二叠世大石寨组火山-沉积岩与早白垩世敖包吐花岗岩的接触带上。文章通过分析该矿床岩、矿石的微量元素和稀土元素,揭示出萤石的成矿作用可分为2个阶段,即交代作用和充填作用。交代作用过程中大石寨组的结晶灰岩可能为萤石的形成提供了部分Ca来源,萤石矿石的稀土元素配分模式与海水基本类似,具有Ce负异常;成矿作用后期主要表现为充填作用,形成颗粒粗大的萤石,表现为重稀土元素富集的特征,并随着萤石的沉淀析出,稀土元素总量逐渐下降,反映出成矿流体经历了较长期的演化过程。各地层单元、花岗岩体和萤石矿石的Sr、Nd、Pb同位素研究表明,萤石的放射性同位素组成具有壳、幔源混合的特点,成矿物质来源具有多源性。早白垩世敖包吐花岗岩可能是萤石中F的主要来源,而大石寨组的结晶灰岩则可能提供了Ca。另外,Pb、Nd同位素的极大不均一性,有可能是成矿流体在运移过程中对艾力格庙群放射性组分的选择性吸收的结果。萤石成矿作用与钾玄岩的时空关系暗示了萤石的成矿过程可能是中国东部岩石圈减薄和下地壳的置换地质事件的结果。在构造转型的过程中,燕山中期富碱的酸性花岗岩浆的活动分异出富含F的成矿流体,与幔源流体混合,沿区域重新活化的深大断裂和大石寨组的层间破碎带上升,交代其间的灰岩透镜体,从而形成敖包吐中型萤石矿床。  相似文献   
290.
This study explores garnet coronas around hedenbergite, which were formed by the reaction plagioclase + hedenbergite→garnet + quartz, to derive information about diffusion paths that allowed for material redistribution during reaction progress. Whereas quartz forms disconnected single grains along the garnet/hedenbergite boundaries, garnet forms ~20‐μm‐wide continuous polycrystalline rims along former plagioclase/hedenbergite phase boundaries. Individual garnet crystals are separated by low‐angle grain boundaries, which commonly form a direct link between the reaction interfaces of the plagioclase|garnet|hedenbergite succession. Compositional variations in garnet involve: (i) an overall asymmetric compositional zoning in Ca, Fe2+, Fe3+ and Al across the garnet layer; and (ii) micron‐scale compositional variations in the near‐grain boundary regions and along plagioclase/garnet phase boundaries. These compositional variations formed during garnet rim growth. Thereby, transfer of the chemical components occurred by a combination of fast‐path diffusion along grain boundaries within the garnet rim, slow diffusion through the interior of the garnet grains, and by fast diffusion along the garnet/plagioclase and the garnet/hedenbergite phase boundaries. Numerical simulation indicates that diffusion of Ca, Al and Fe2+ occurred about three to four, four and six to seven orders of magnitude faster along the grain boundaries than through the interior of the garnet grains. Fast‐path diffusion along grain boundaries contributed substantially to the bulk material transfer across the growing garnet rim. Despite the contribution of fast‐path diffusion, bulk diffusion through the garnet rim was too slow to allow for chemical equilibration of the phases involved in garnet rim formation even on a micrometre scale. Based on published garnet volume diffusion data the growth interval of a 20‐μm‐wide garnet rim is estimated at ~103–104 years at the inferred reaction conditions of 760 ± 50 °C at 7.6 kbar. Using the same parameterization of the growth law, 100‐μm‐ and 1‐mm‐thick garnet rims would grow within 105–106 and 106–107 years respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号