首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   10篇
  国内免费   2篇
测绘学   8篇
大气科学   54篇
地球物理   70篇
地质学   56篇
海洋学   9篇
天文学   18篇
自然地理   31篇
  2022年   2篇
  2021年   2篇
  2020年   8篇
  2019年   7篇
  2018年   8篇
  2017年   11篇
  2016年   13篇
  2015年   14篇
  2014年   9篇
  2013年   20篇
  2012年   3篇
  2011年   14篇
  2010年   10篇
  2009年   9篇
  2008年   25篇
  2007年   7篇
  2006年   5篇
  2005年   2篇
  2004年   6篇
  2003年   4篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   6篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   4篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有246条查询结果,搜索用时 31 毫秒
11.
Airborne correlation spectrometry (COSPEC) was used to measure the rate of SO2 emission at White Island on three dates, i.e., November 1983, 1230 ± 300 t/d; November 1984, 320 ± 120 t/d; and January 1985, 350 ± 150 t/d (t = metric tons). The lower emission rates are likely to reflect the long-term emission rates, whereas the November 1983 rate probably reflects conditions prior to the eruption of December 1983. The particle flux in the White Island plume, as determined with a quartz crystal microbalance/cascade in November 1983, was 1.3 t/d, unusually low for volcanic plumes. The observed plume particles, as shown from scanning electron microscopy, include halite, native sulfur, and silicates and are broadly similar to other volcanic plumes.Gas analyses from high-temperature volcanic fumaroles collected from June 1982 through November 1984 werde used together with the COSPEC data to estimate the flux of other gas species from White Island. The rates estimated are indicative of the long-term volcanic emission, i.e., 8000–9000 t/d H2O, 900–1000 t/d CO2, 70–80 t/d HCl, 1.5–2 t/d HF, and about 0.2 t/d NH3. The long-term thermal power output at White Island is estimated at about 400 MW.  相似文献   
12.
Summary Many climate scientists have suggested that anthropogenic emissions of greenhouse gases may create severe climate problems for Britain; however, the potential cooling effects of sulphur dioxide are widely acknowledged. In this investigation, we analyze British mean annual temperature, mean annual precipitation, and mean diurnal air temperature range over the period 1929–1988. Our analyses of these records reveal (a) a shift in the early 1950s away from warming and toward cooling, (b) a relative decline in maximum air temperatures when compared to minimum air temperatures, (c) a strong decline in the diurnal air temperature range and (d) a significant linkage between diurnal temperature range and precipitation. Given these signals in the observed climate record, it would appear that SO2 rather than CO2 has been the major anthropogenic climate influence in Britain over the past four decades.With 6 Figures  相似文献   
13.
The increased frequency of wildfires in the United States has become a common prediction associated with the build-up of greenhouse gases. In this investigation, variations in annual wildfire data in Yellowstone National Park are compared to variations in historical climate conditions for the area. Univariate and multivariate analytical techniques reveal that (a) summer temperatures in the Park are increasing, (b) January-June precipitation levels are decreasing, and (c) variations in burn area within the Park are significantly related to the observed variations in climate. Outputs from four different general circulation model simulations for 2 × CO2 are included in the analyses; model predictions for increasing aridity in the Yellowstone Park area are generally in agreement with observed trends in the historical climate records.  相似文献   
14.
Ongoing drought in the Colorado River Basin, unprecedented urban growth in the watershed, and numerical model simulations showing higher temperatures and lower precipitation totals in the future have all combined to heighten interest in drought in this region. In this investigation, we use principal components analysis (PCA) to independently assess the influence of various teleconnections on Basin-wide and sub-regional winter season Palmer Hydrological Drought Index (PHDI) and precipitation variations in the Basin. We find that the Pacific Decadal Oscillation (PDO) explains more variance in PHDI than El Niño-Southern Oscillation (ENSO), the Atlantic Multidecadal Oscillation (AMO), and the planetary temperature combined for the Basin as a whole. When rotated PCA is used to separate the Basin into two regions, the lower portion of the Basin is similar to the Basin as a whole while the upper portion, which contains the high-elevation locations important to hydrologic yield for the watershed, demonstrates poorly defined relationships with the teleconnections. The PHDI for the two portions of the Basin are shown to have been out of synch for much of the twentieth century. In general, teleconnection indices account for 19% of the variance in PHDI leaving large uncertainties in drought forecasting.  相似文献   
15.
The deep oil exploration drillings in Denmark have shown that especially the Danish Embayment contains low enthalpy geothermal resources associated with warm aquifers. The most promising reservoirs have been found in highly permeable Upper Triassic sand and sandstone beds, which cover at least 5000 km2 at depths of 2000–3000 m and at temperatures of 60–100°C. The porosity of the main reservoir is of 15–25%, and the permeability is presumed to be approximately 1 darcy (10–12 m2) or higher. A layer thickness of 30–60 m has been observed on a number of localities. Also the Middle Jurassic and the Lower Triassic contain reservoirs of interest. A major geothermal exploration work is planned with seismic investigations, drillings to depths of 2000–4000 m and probably establishment of pilot district heating plants.  相似文献   
16.
Bhandari  Vimalkumar  O’Keefe  Kyle 《GPS Solutions》2017,21(4):1707-1720
GPS Solutions - Doppler collision is a unique phenomenon in GNSS where tracking errors are introduced in the measurements due to cross-correlation between two or more satellites. It occurs when the...  相似文献   
17.
As sediment accumulation indicates basin subsidence, erosion often is understood as tectonic uplift, but the amplitude and timing may be difficult to determine because the sedimentary record is missing. Quantification of erosion therefore requires indirect evidence, for example thermal indicators such as temperature, vitrinite reflectance and fission tracks in apatite. However, as always, the types and quality of data and the choice of models are important to the results. For example, considering only the thermal evolution of the sedimentary section discards the thermal time constant of the lithosphere and essentially ignores the temporal continuity of the thermal structure. Furthermore, the types and density of thermal indicators determine the solution space of deposition and erosion, the quantification of which calls for the use of inverse methods, which can only be successful when all models are mutually consistent. Here, we use integrated basin modelling and Markov Chain Monte Carlo inversion of four deep boreholes to show that the erosional pattern along the Sorgenfrei–Tornquist Zone (STZ) in the eastern North Sea is consistent with a tectonic model of tectonic inversion based on compression and relaxation of an elastic plate. Three wells in close proximity SW of the STZ have different data and exhibit characteristic differences in erosion estimates but are consistent with the formation of a thick chalk sequence, followed by minor Cenozoic erosion during relaxation inversion. The well on the inversion ridge requires ca. 1.7 km Jurassic-Early Cretaceous sedimentation followed by Late Cretaceous–Palaeocene erosion during inversion. No well demands thick Cenozoic sedimentation followed by equivalent significant Neogene exhumation. When data are of high quality and models are consistent, the thermal indicator method yields significant results with important tectonic and geodynamic implications.  相似文献   
18.
A study was conducted to understand the hydrogeological processes dominating in the North 24 Parganas and South 24 Parganas based on representative 39 groundwater samples collected from selected area. The abundance of major ions was in the order of Ca2+ > Na+ > Mg2+ > K+ > Fe2+ for cations and HCO3 ? > PO4 3? > Cl? > SO4 2? > NO3 ? for anions. Piper trilinear diagram was plotted to understand the hydrochemical facies. Most of the samples are of Ca-HCO3 type. Based on conventional graphical plots for (Ca + Mg) vs. (SO4 + HCO3) and (Na + K) vs. Cl, it is interpreted that silicate weathering and ion exchange are the dominant processes within the study area. Previous studies have reported quartz, feldspar, illite, and chlorite clay minerals as the major mineral components obtained by the XRD analysis of sediments. Mineralogical investigations by SEM and EDX of aquifer materials have shown the occurrence of arsenic as coating on mineral grains in the silty clay as well as in the sandy layers. Excessive withdrawal of groundwater for irrigation and drinking purposes is responsible for fluctuation of the water table in the West Bengal. Aeration beneath the ground surface caused by fluctuation of the water table may lead to the formation of carbonic acid. Carbonic acid is responsible for the weathering of silicate minerals, and due to the formation of clay as a product of weathering, ion exchange also dominates in the area. These hydrogeological processes may be responsible for the release of arsenic into the groundwater of the study area, which is a part of North 24 Parganas and South 24 Parganas.  相似文献   
19.
20.
We present a narrative of the eruptive events culminating in the cataclysmic January 15, 2022 eruption of Hunga Tonga-Hunga Ha'apai Volcano by synthesizing diverse preliminary seismic, volcanological, sound wave, and lightning data available within the first few weeks after the eruption occurred. The first hour of eruptive activity produced fast-propagating tsunami waves, long-period seismic waves, loud audible sound waves, infrasonic waves, exceptionally intense volcanic lightning and an unsteady volcanic plume that transiently reached—at 58 ?km—the Earth's mesosphere. Energetic seismic signals were recorded worldwide and the globally stacked seismogram showed episodic seismic events within the most intense periods of phreatoplinian activity, and they correlated well with the infrasound pressure waveform recorded in Fiji. Gravity wave signals were strong enough to be observed over the entire planet in just the first few hours, with some circling the Earth multiple times subsequently. These large-amplitude, long-wavelength atmospheric disturbances come from the Earth's atmosphere being forced by the magmatic mixture of tephra, melt and gasses emitted by the unsteady but quasi-continuous eruption from 0402±1–1800 UTC on January 15, 2022. Atmospheric forcing lasted much longer than rupturing from large earthquakes recorded on modern instruments, producing a type of shock wave that originated from the interaction between compressed air and ambient (wavy) sea surface. This scenario differs from conventional ideas of earthquake slip, landslides, or caldera collapse-generated tsunami waves because of the enormous (~1000x) volumetric change due to the supercritical nature of volatiles associated with the hot, volatile-rich phreatoplinian plume. The time series of plume altitude can be translated to volumetric discharge and mass flow rate. For an eruption duration of ~12 ?h, the eruptive volume and mass are estimated at 1.9 ?km3 and ~2 900 ?Tg, respectively, corresponding to a VEI of 5–6 for this event. The high frequency and intensity of lightning was enhanced by the production of fine ash due to magma—seawater interaction with concomitant high charge per unit mass and the high pre-eruptive concentration of dissolved volatiles. Analysis of lightning flash frequencies provides a rapid metric for plume activity and eruption magnitude. Many aspects of this eruption await further investigation by multidisciplinary teams. It represents a unique opportunity for fundamental research regarding the complex, non-linear behavior of high energetic volcanic eruptions and attendant phenomena, with critical implications for hazard mitigation, volcano forecasting, and first-response efforts in future disasters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号