首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
测绘学   2篇
地球物理   18篇
地质学   13篇
海洋学   2篇
天文学   9篇
自然地理   5篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2017年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2008年   1篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1993年   1篇
  1988年   4篇
  1985年   1篇
  1983年   1篇
  1980年   3篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1972年   1篇
  1971年   1篇
排序方式: 共有49条查询结果,搜索用时 171 毫秒
41.
Decoupling the impacts of climate and tectonics on hillslope erosion rates is a challenging problem. Hillslope erosion rates are well known to respond to changes in hillslope boundary conditions (e.g. channel incision rates) through their dependence on soil thickness, and precipitation is an important control on soil formation. Surprisingly though, compilations of hillslope denudation rates suggest little precipitation sensitivity. To isolate the effects of precipitation and boundary condition, we measured rates of soil production from bedrock and described soils on hillslopes along a semi‐arid to hyperarid precipitation gradient in northern Chile. In each climate zone, hillslopes with contrasting boundary conditions (actively incising channels versus non‐eroding landforms) were studied. Channel incision rates, which ultimately drive hillslope erosion, varied with precipitation rather than tectonic setting throughout the study area. These precipitation‐dependent incision rates are mirrored on the hillslopes, where erosion shifts from relatively fast and biologically‐driven to extremely slow and salt‐driven as precipitation decreases. Contrary to studies in humid regions, bedrock erosion rates increase with precipitation following a power law, from ~1 m Ma?1 in the hyperarid region to ~40 m Ma?1 in the semi‐arid region. The effect of boundary condition on soil thickness was observed in all climate zones (thicker soils on hillslopes with stable boundaries compared to hillslopes bounded by active channels), but the difference in bedrock erosion rates between the hillslopes within a climate region (slower erosion rates on hillslopes with stable boundaries) decreased as precipitation decreased. The biotic‐abiotic threshold also marks the precipitation rate below which bedrock erosion rates are no longer a function of soil thickness. Our work shows that hillslope processes become sensitive to precipitation as life disappears and the ability of the landscape to respond to tectonics decreases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
42.
Hydroxy acids in sediments of Lakes Bonney, Fryxell, Joyce and Vanda, and unnamed ponds (B2, NF1, NF2 and L4) as well as in cyanobacterial mats from the McMurdo Sound region of southern Victoria Land in Antarctica have been studied to clarify their features and elucidate their source organisms. Normal and branched (iso and anteiso) 2-hydroxy acids were found in all the samples studied with the predominance of even- and odd-carbon numbers, respectively. The most dominant 2-hydroxy acids in the sediments were mainly short-chain components (<C20). Normal and branched 3-hydroxy acids were detectewith the predominance of even- and odd-carbon numbers, respectively, in total concentrations between 0.48 and 53 μg/g of dry sediment. (ω-1)-Hydroxy acids were all long-chains (C22, C24, C26, C28 and C30). 9,10-Dihydroxyhexadecanoic and/or 9,10-dihydroxyoctadecanoic acids were identified in all the sediments and a cyanobacterial mat. The composition of hydroxy acids differ considerably among the lakes and ponds, suggesting the difference of source organisms. These 2-, 3- and (ω-1)-hydroxy, and 9,10-dihydroxy acids may be derived from cyanobacteria and microalgae, in addition to non-photosynthetic microorganisms. Cyanobacteria and microalgae which are widely distributed in the world, may be important sources of hydroxy acids in the natural environments.  相似文献   
43.
Seasonal variation of the turbidity (suspended substance) has been investigated in Lake Biwa. During the last five years, vertical and horizontal distributions of water temperature, turbidity, electric conductivity and chlorophyll-a have been obtained both in the south basin and the southern part of the north basin of Lake Biwa. The benthic nepheloid layer (BNL) developed in the seasons of thermal stratification, and is not detectable in the non-stratification period (winter). The BNL is mainly maintained by the organic matter such as phytoplankton under decomposition. However, the turbidity in the nepheloid layer was much affected by the turbid water from rivers after heavy rainfall. In this case, the major component of the suspended substance (SS) in the nepheloid layer was inorganic soil. The particulate P concentration, which is originated from phytoplankton, also increased after a rain fall. This suggests that phytoplankton in the surface layer sinks with clay and silt coming through rivers. From summer to the end of the stratification period, another kind of turbidity appeared in the bottom layer. This is caused by the chemical reaction of manganese under the anoxic condition. The resuspension of bottom sediment by strong currents also occurred, but it is not a major process for maintaining the BNL.  相似文献   
44.
Cosmic ray exposure (CRE) ages of CM chondrites have been found to have multiple peaks (as many as four), in stark contrast to other groups of chondrites (Nishiizumi and Caffee 2012; Herzog and Caffee 2014). In this study, we sought correlations between the CRE ages and petrography of CM chondrites, and we conclude that the degree of aqueous alteration does appear to vary with the CRE ages—the CMs displaying the most aqueous alteration all have relatively short exposure ages. However, some CMs with low degrees of alteration also have short exposure ages—thus, this apparent correlation is not exclusive. We also found a definite inverse relation between the number of distinctive lithologies in a CM and its exposure age, which could indicate different responses of homogeneous and heterogeneous meteoroids to the space environment between their onset of exposure (exhumation and ejection from the parent body) and arrival at Earth. Breccias have more internal surfaces of lithologic discontinuity, possibly resulting in weaker meteoroids that disintegrate more readily than their more homogeneous counterparts. Our results suggest that CM chondrite regoliths consist of numerous genomict lithologies in a breccia with millimeter‐ to decimeter‐scale clasts, with varying degree of heating/metamorphism.  相似文献   
45.
This study represents an attempt to determine the sources of vermillion found in ancient Japanese burial mounds of the 1st–6th centuries A.D., by comparing their ratios of sulfur isotopes with those of cinnabar ore samples collected in Japan and China. Cinnabar ore samples were taken from three mines in central Japan (Niu in Mie, Yamato in Nara, and Sui in Tokushima prefectures), and from Wanshan in China, where mining activity has been recorded back to the 6th century A.D. and earlier. When the ratios of a 34S and 32S were compared with the Canyon Diablo meteorite standard, a high δ34S value of +22.6 ± 3.6‰ was found for the Wanshan mine, as opposed to low values ranging from −7.3 ± 1.9 to −2.1 ± 1.6‰ for the Japanese mines. The ratios of sulfur isotopes in vermillion collected from ancient Japanese burial mounds also divided into two groups. High ratios (+11.1 to +22.8‰) were found in 1st‐ and 2nd‐ century burials in the western regions of northern Kyushu and San'in, suggesting that local, powerful chiefs obtained vermillion through relations with China. Lower ratios (−8.4 to −2.0‰) were found in burials of the 2nd through 6th centuries in central Japan, where the ancient Yamato dynasty emerged as the first unified polity around the end of the 2nd century A.D. We, therefore, conclude that the Yamato dynasty exploited local sources of vermillion, rather than depending solely on China. The present study demonstrates the feasibility of determining sources of vermillion using sulfur isotope ratios, and the relevance of such findings for archaeological research. © 2005 Wiley Periodicals, Inc.  相似文献   
46.
To understand the detailed process of fault activity, aseismic slip may play a crucial role. Aseismic slip of inland faults in Japan is not well known, except for that related to the Atotsugawa fault. To know whether aseismic slip does not occur, or is merely not detected, is an important question. The National Institute of Advanced Industrial Science and Technology constructed an observation site near Yasutomi fault, a part of the Yamasaki fault system, and has collected data on the crustal strain field, groundwater pressures, and crustal movement using GPS. In a departure from the long-term trend, a transient change of the crustal strain field lasting a few months was recorded. It indicated the possibility of an aseismic slip event. Furthermore, analyses of data from the extensometers at Yasutomi and Osawa observation vaults of Kyoto University, as well as GPS data from the Geographical Survey Institute (GEONET), revealed unsteady crustal strain changes. All data could be explained by local, left-lateral, aseismic slip of the order of 1 mm in the shallow part of the Yasutomi fault.  相似文献   
47.
P-wave first motions, radiation patterns and amplitudes of long-period surface waves, relocated aftershock distributions, leveling and tsunami data indicate that the 1973 Nemuro-Oki earthquake is caused by a low-angle thrust-faulting, representing a rebound at the upper 50 km of the interface between the continental and oceanic lithospheres. Rebound, most likely aseismic, at depths below 50 km, is suggested to take place in the near future from a comparison of recent geologic crustal deformation with pre-seismic and co-seismic data. The estimated seismic moment is about 1314 of that for the neighboring great earthquakes. The macro-seismic data suggest that the 1973 earthquake is smaller than the 1894 Nemuro-Oki earthquake, the last great earthquake in this region.The 1973 earthquake had been predicted on the basis of a seismic gap. Although the prediction was successful as to the location and nature of the faulting and partly as to the occurrence time, it is smaller than the predicted one. A part of the seismic gap may still remain. The difference between the observed seismic slip (1.6 m) and that predicted on the basis of the pre-seismic crustal deformation (3.0 m) indicates either (1) the 1973 earthquake relieved only a part of the strain accumulated in the upper 50 km, or (2) a significant amount of aseismic slip took place on the seismic fault and completely relieved the accumulated strain in the focal region of the 1973 earthquake. If the former is the case, the remaining strain, not only in the focal region, but also in the remaining seismic gap adjoining it, may be relieved in a larger earthquake in the future.The source parameters obtained are as follows: fault plane, dip direction = N40°W, dip angle = 27°; seismic moment = 6.7 · 1027 dyn cm; average slip dislocation, 1.6 m in N63°W direction; stress drop = 35 bars. In these calculations, the fault dimension and the rigidity are assumed to be 100 · 60 km2 and 7.0 · 1011 dyn/cm2, respectively.  相似文献   
48.
49.
Abstract– We present the results of a noble gas (He, Ne, Ar) and cosmogenic radionuclide (10Be, 26Al, 36Cl) analysis of two chondritic fragments (#A100, L4 and #25, H5) found in the Almahata Sitta strewn field in Sudan. We confirm their earlier attribution to the same fall as the ureilites dominating the strewn field, based on the following findings: (1) both chondrite samples indicate a preatmospheric radius of approximately 300 g cm?2, consistent with the preatmospheric size of asteroid 2008 TC3 that produced the Almahata Sitta strewn field; (2) both have, within error, a 21Ne/26Al‐based cosmic ray exposure age of approximately 20 Ma, identical to the reported ages of Almahata Sitta ureilites; (3) both exhibit hints of ureilitic Ar in the trapped component. We discuss a possible earlier irradiation phase for the two fragments of approximately 10–20 Ma, visible only in cosmogenic 38Ar. We also discuss the approximately 3.8 Ga (4He) and approximately 4.6 Ga (40Ar) gas retention ages, measured in both chondritic fragments. These imply that the two chondrite fragments were incorporated into the ureilite host early in solar system evolution, and that the parent asteroid from which 2008 TC3 is derived has not experienced a large break‐up event in the last 3.8 Ga.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号