首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   5篇
测绘学   11篇
大气科学   8篇
地球物理   64篇
地质学   25篇
海洋学   14篇
天文学   21篇
自然地理   11篇
  2022年   2篇
  2021年   1篇
  2019年   6篇
  2018年   2篇
  2017年   2篇
  2016年   7篇
  2015年   2篇
  2014年   5篇
  2013年   9篇
  2012年   1篇
  2011年   4篇
  2010年   14篇
  2009年   19篇
  2008年   12篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2004年   4篇
  2003年   5篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1989年   3篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   3篇
  1964年   1篇
  1954年   1篇
  1941年   1篇
排序方式: 共有154条查询结果,搜索用时 46 毫秒
61.
Reliable dating of glaciomarine sediments deposited on the Antarctic shelf since the Last Glacial Maximum (LGM) is challenging because of the rarity of calcareous (micro‐) fossils and the recycling of fossil organic matter. Consequently, radiocarbon (14C) ages of the acid‐insoluble organic fraction (AIO) of the sediments bear uncertainties that are difficult to quantify. Here we present the results of three different methods to date a sedimentary unit consisting of diatomaceous ooze and diatomaceous mud that was deposited following the last deglaciation at five core sites on the inner shelf in the western Amundsen Sea (West Antarctica). In three cores conventional 14C dating of the AIO in bulk samples yielded age reversals down‐core, but at all sites the AIO 14C ages obtained from diatomaceous ooze within the diatom‐rich unit yielded similar uncorrected 14C ages between 13 517 ± 56 and 11 543 ± 47 years before present (a BP). Correction of these ages by subtracting the core‐top ages, which probably reflect present‐day deposition (as indicated by 210Pb dating of the sediment surface at one core site), yielded ages between ca. 10 500 and 8400 cal. a BP. Correction of the AIO ages of the diatomaceous ooze by only subtracting the marine reservoir effect (MRE) of 1300 a indicated deposition of the diatom‐rich sediments between 14 100 and 11 900 cal. a BP. Most of these ages are consistent with age constraints between 13.0 and 8.0 ka for the diatom‐rich unit, which we obtained by correlating the relative palaeomagnetic intensity (RPI) records of three of the sediment cores with global and regional reference curves. As a third dating technique we applied conventional radiocarbon dating of the AIO included in acid‐cleaned diatom hard parts extracted from the diatomaceous ooze. This method yielded uncorrected 14C ages of only 5111 ± 38 and 5106 ± 38 a BP, respectively. We reject these young ages, because they are likely to be overprinted by the adsorption of modern atmospheric carbon dioxide onto the surfaces of the diatom hard parts prior to sample graphitisation and combustion for 14C dating. The deposition of the diatom‐rich unit in the western Amundsen Sea suggests deglaciation of the inner shelf before ca. 13 ka BP. The deposition of diatomaceous oozes elsewhere on the Antarctic shelf around the same time, however, seems to be coincidental rather than directly related. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
62.
Information included in this summary is based on more detailed reports published in the Bulletin of the Global Volcanism Network, vol. 35, no. 3, March 2010 (on the Internet at ). Edited by scientists at the Smithsonian, this bulletin includes reports provided by a worldwide network of correspondents. The reports contain the names and contact information for all sources. Please note that these reports are preliminary and subject to change as events are studied in more detail. The Global Volcanism Program welcomes further reports of current volcanism, seismic unrest, monitoring data, and field observations.  相似文献   
63.
Information included in this summary is based on more detailed reports published in the Bulletin of the Global Volcanism Network, vol. 34, no. 1, January 2009 (on the Internet at ). Edited by scientists at the Smithsonian, this bulletin includes reports provided by a worldwide network of correspondents. The reports contain the names and contact information for all sources. Please note that these reports are preliminary and subject to change as events are studied in more detail. The Global Volcanism Program welcomes further reports of current volcanism, seismic unrest, monitoring data, and field observations.  相似文献   
64.
65.
We present three new benthic foraminiferal δ13C, δ18O, and total organic carbon time series from the eastern Atlantic sector of the Southern Ocean between 41°S and 47°S. The measured glacial δ13C values belong to the lowest hitherto reported. We demonstrate a coincidence between depleted late Holocene (LH) δ13C values and positions of sites relative to ocean surface productivity. A correction of +0.3 to +0.4 [‰ VPDB] for a productivity-induced depletion of Last Glacial Maximum (LGM) benthic δ13C values of these cores is suggested. The new data are compiled with published data from 13 sediment cores from the eastern Atlantic Ocean between 19°S and 47°S, and the regional deep and bottom water circulation is reconstructed for LH (4–0 ka) and LGM (22–16 ka) times. This extends earlier eastern Atlantic-wide synoptic reconstructions which suffered from the lack of data south of 20°S. A conceptual model of LGM deep-water circulation is discussed that, after correction of southernmost cores below the Antarctic Circumpolar Current (ACC) for a productivity-induced artifact, suggests a reduced formation of both North Atlantic Deep Water in the northern Atlantic and bottom water in the southwestern Weddell Sea. This reduction was compensated for by the formation of deep water in the zone of extended winter sea-ice coverage at the northern rim of the Weddell Sea, where air–sea gas exchange was reduced. This shift from LGM deep-water formation in the region south of the ACC to Holocene bottom water formation in the southwestern Weddell Sea, can explain lower preformed δ13CDIC values of glacial circumantarctic deep water of approximately 0.3‰ to 0.4‰. Our reconstruction brings Atlantic and Southern Ocean δ13C and Cd/Ca data into better agreement, but is in conflict, however, with a scenario of an essentially unchanged thermohaline deep circulation on a global scale. Benthic δ18O-derived LGM bottom water temperatures, by 1.9°C and 0.3°C lower than during the LH at deepest southern and shallowest northern sites, respectively, agree with the here proposed reconstruction of deep-water circulation in the eastern South Atlantic Ocean.  相似文献   
66.
Information included in this summary is based on more detailed reports published in the Bulletin of the Global Volcanism Network, vol. 34, no. 3, March 2009 (on the Internet at ). Edited by scientists at the Smithsonian, this bulletin includes reports provided by a worldwide network of correspondents. The reports contain the names and contact information for all sources. Please note that these reports are preliminary and subject to change as events are studied in more detail. The Global Volcanism Program welcomes further reports of current volcanism, seismic unrest, monitoring data, and field observations.  相似文献   
67.
Information included in this summary is based on more detailed reports published in the Bulletin of the Global Volcanism Network, vol. 34, no. 5, May 2009 (on the Internet at ). Edited by scientists at the Smithsonian, this bulletin includes reports provided by a worldwide network of correspondents. The reports contain the names and contact information for all sources. Please note that these reports are preliminary and subject to change as events are studied in more detail. The Global Volcanism Program welcomes further reports of current volcanism, seismic unrest, monitoring data, and field observations.  相似文献   
68.
Soil erosion and depositon are often considered to generate an unintentional, but significant sink sink for atmospheric GHGs. This study highligts the need for a full account of all emissions associated with agriculture when assessing the impact of soil erosion on climate.  相似文献   
69.
We report on testing the UNB (University of New Brunswick) software suite for accurate regional geoid model determination by use of Stokes-Helmert’s method against an Australian Synthetic Field (ASF) as “ground truth”. This testing has taken several years and has led to discoveries of several significant errors (larger than 5mm in the resulting geoid models) both in the UNB software as well as the ASF. It was our hope that, after correcting the errors in UNB software, we would be able to come up with some definite numbers as far as the achievable accuracy for a geoid model computed by the UNB software. Unfortunately, it turned out that the ASF contained errors, some of as yet unknown origin, that will have to be removed before that ultimate goal can be reached. Regardless, the testing has taught us some valuable lessons, which we describe in this paper. As matters stand now, it seems that given errorless gravity data on 1′ by 1′ grid, a digital elevation model of a reasonable accuracy and no topographical density variations, the Stokes-Helmert approach as realised in the UNB software suite is capable of delivering an accuracy of the geoid model of no constant bias, standard deviation of about 25 mm and a maximum range of about 200 mm. We note that the UNB software suite does not use any corrective measures, such as biases and tilts or surface fitting, so the resulting errors reflect only the errors in modelling the geoid.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号