首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   11篇
  国内免费   2篇
测绘学   30篇
大气科学   16篇
地球物理   51篇
地质学   35篇
海洋学   5篇
天文学   43篇
综合类   2篇
自然地理   11篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   6篇
  2019年   7篇
  2018年   8篇
  2017年   14篇
  2016年   15篇
  2015年   16篇
  2014年   8篇
  2013年   18篇
  2012年   8篇
  2011年   2篇
  2010年   6篇
  2009年   8篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   6篇
  2002年   4篇
  2000年   5篇
  1999年   3篇
  1998年   5篇
  1997年   1篇
  1996年   4篇
  1995年   5篇
  1994年   3篇
  1993年   1篇
  1991年   8篇
  1990年   4篇
  1989年   2篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1970年   1篇
排序方式: 共有193条查询结果,搜索用时 15 毫秒
121.
Deeply integrating Linked Data with Geographic Information Systems   总被引:1,自引:0,他引:1  
The realization that knowledge often forms a densely interconnected graph has fueled the development of graph databases, Web‐scale knowledge graphs and query languages for them, novel visualization and query paradigms, as well as new machine learning methods tailored to graphs as data structures. One such example is the densely connected and global Linked Data cloud that contains billions of statements about numerous domains, including life science and geography. While Linked Data has found its way into everyday applications such as search engines and question answering systems, there is a growing disconnect between the classical ways in which Geographic Information Systems (GIS) are still used today and the open‐ended, exploratory approaches used to retrieve and consume data from knowledge graphs such as Linked Data. In this work, we conceptualize and prototypically implement a Linked Data connector framework as a set of toolboxes for Esri's ArcGIS to close this gap and enable the retrieval, integration, and analysis of Linked Data from within GIS. We discuss how to connect to Linked Data endpoints, how to use ontologies to probe data and derive appropriate GIS representations on the fly, how to make use of reasoning, how to derive data that are ready for spatial analysis out of RDF triples, and, most importantly, how to utilize the link structure of Linked Data to enable analysis. The proposed Linked Data connector framework can also be regarded as the first step toward a guided geographic question answering system over geographic knowledge graphs.  相似文献   
122.
Geographic entities and the information associated with them play a major role in Web‐scale knowledge graphs such as Linked Data. Interestingly, almost all major datasets represent places and even entire regions as point coordinates. There are two key reasons for this. First, complex geometries are difficult to store and query using the current Linked Data technology stack to a degree where many queries take minutes to return or will simply time out. Second, the absence of complex geometries confirms a common suspicion among GIScientists, namely that for many everyday queries place‐based relational knowledge is more relevant than raw geometries alone. To give an illustrative example, the statement that the White House is in Washington, DC is more important for gaining an understating of the city than the exact geometries of both entities. This does not imply that complex geometries are unimportant but that (topological) relations should also be extracted from them. As Egenhofer and Mark (1995b) put it in their landmark paper on naive geography, topology matters, metric refines. In this work we demonstrate how to compute and utilize strict, approximate, and metrically refined topological relations between several geographic feature types in DBpedia and compare our results to approaches that compute result sets for topological queries on the fly.  相似文献   
123.
Waldo Tobler frequently reminded us that the law named after him was nothing more than calling for exceptions. This article discusses one of these exceptions. Spatial relations between points are frequently modeled as vectors in which both distance and direction are of equal prominence. However, in Tobler's first law of geography, such a relation is described only from the perspective of distance by relating the decreasing similarity of observations in some attribute space to their increasing distance in geographic space. Although anisotropic versions of many geographic analysis techniques, such as directional semivariograms, anisotropy clustering, and anisotropic point pattern analysis, have been developed over the years, direction remains on the level of an afterthought. We argue that, compared to distance, directional information is still under‐explored and anisotropic techniques are substantially less frequently applied in everyday GIS analysis. Commonly, when classical spatial autocorrelation indicators, such as Moran's I, are used to understand a spatial pattern, the weight matrix is only built from distance, without direction being considered. Similarly, GIS operations, such as buffering, do not take direction into account either, with distance in all directions being treated equally. In reality, meanwhile, particularly in urban structures and when processes are driven by the underlying physical geography, direction plays an essential role. In this article we ask whether the development of early GIS, data (sample) sparsity, and Tobler's law lead to a theory‐induced blindness for the role of direction. If so, is it possible to envision direction becoming a first‐class citizen of equal importance to distance instead of being an afterthought only considered when the deviation from a perfect circle becomes too obvious to be ignored?  相似文献   
124.
Traffic forecasting is a challenging problem due to the complexity of jointly modeling spatio‐temporal dependencies at different scales. Recently, several hybrid deep learning models have been developed to capture such dependencies. These approaches typically utilize convolutional neural networks or graph neural networks (GNNs) to model spatial dependency and leverage recurrent neural networks (RNNs) to learn temporal dependency. However, RNNs are only able to capture sequential information in the time series, while being incapable of modeling their periodicity (e.g., weekly patterns). Moreover, RNNs are difficult to parallelize, making training and prediction less efficient. In this work we propose a novel deep learning architecture called Traffic Transformer to capture the continuity and periodicity of time series and to model spatial dependency. Our work takes inspiration from Google’s Transformer framework for machine translation. We conduct extensive experiments on two real‐world traffic data sets, and the results demonstrate that our model outperforms baseline models by a substantial margin.  相似文献   
125.
Semantic Enablement for Spatial Data Infrastructures   总被引:4,自引:0,他引:4  
Building on abstract reference models, the Open Geospatial Consortium (OGC) has established standards for storing, discovering, and processing geographical information. These standards act as a basis for the implementation of specific services and Spatial Data Infrastructures (SDI). Research on geo‐semantics plays an increasing role to support complex queries and retrieval across heterogeneous information sources, as well as for service orchestration, semantic translation, and on‐the‐fly integration. So far, this research targets individual solutions or focuses on the Semantic Web, leaving the integration into SDI aside. What is missing is a shared and transparent Semantic Enablement Layer for SDI which also integrates reasoning services known from the Semantic Web. Instead of developing new semantically enabled services from scratch, we propose to create profiles of existing services that implement a transparent mapping between the OGC and the Semantic Web world. Finally, we point out how to combine SDI with linked data.  相似文献   
126.
Deformation measurements have a repeatable nature. This means that deformation measurements are performed often with the same equipment, methods, geometric conditions and in a similar environment in epochs 1 and 2 (e.g., a fully automated, continuous control measurements). It is, therefore, reasonable to assume that the results of deformation measurements can be distorted by both random errors and by some non-random errors, which are constant in both epochs. In other words, there is a high probability that the difference in the accuracy and precision of measurement of the same geometric element of the network in both epochs has a constant value and sign. The constant errors are understood, but the manifestation of these errors is difficult to determine in practice. For free control networks (the group of potential reference points in absolute control networks or the group of potential stable points in relative networks), the results of deformation measurements are most often processed using robust methods. Classical robust methods do not completely eliminate the effect of constant errors. This paper proposes a new robust alternative method called REDOD. The performed tests showed that if the results of deformation measurements were additionally distorted by constant errors, the REDOD method completely eliminated their effect from deformation analysis results. If the results of deformation measurements are only distorted by random errors, the REDOD method yields very similar deformation analysis results as the classical IWST method. The numerical tests were preceded by a theoretical part. The theoretical part describes the algorithm of classical robust methods. Particular attention was paid to the IWST method. In relation to classical robust methods, the optimization problem of the new REDOD method was formulated and the algorithm for its solution was derived.  相似文献   
127.
The contribution of Starlette, Stella, and AJISAI is currently neglected when defining the International Terrestrial Reference Frame, despite a long time series of precise SLR observations and a huge amount of available data. The inferior accuracy of the orbits of low orbiting geodetic satellites is the main reason for this neglect. The Analysis Centers of the International Laser Ranging Service (ILRS ACs) do, however, consider including low orbiting geodetic satellites for deriving the standard ILRS products based on LAGEOS and Etalon satellites, instead of the sparsely observed, and thus, virtually negligible Etalons. We process ten years of SLR observations to Starlette, Stella, AJISAI, and LAGEOS and we assess the impact of these Low Earth Orbiting (LEO) SLR satellites on the SLR-derived parameters. We study different orbit parameterizations, in particular different arc lengths and the impact of pseudo-stochastic pulses and dynamical orbit parameters on the quality of the solutions. We found that the repeatability of the East and North components of station coordinates, the quality of polar coordinates, and the scale estimates of the reference are improved when combining LAGEOS with low orbiting SLR satellites. In the multi-SLR solutions, the scale and the \(Z\) component of geocenter coordinates are less affected by deficiencies in solar radiation pressure modeling than in the LAGEOS-1/2 solutions, due to substantially reduced correlations between the \(Z\) geocenter coordinate and empirical orbit parameters. Eventually, we found that the standard values of Center-of-mass corrections (CoM) for geodetic LEO satellites are not valid for the currently operating SLR systems. The variations of station-dependent differential range biases reach 52 and 25 mm for AJISAI and Starlette/Stella, respectively, which is why estimating station-dependent range biases or using station-dependent CoM, instead of one value for all SLR stations, is strongly recommended. This clearly indicates that the ILRS effort to produce CoM corrections for each satellite, which are site-specific and depend on the system characteristics at the time of tracking, is very important and needs to be implemented in the SLR data analysis.  相似文献   
128.
The space segment of the European Global Navigation Satellite System (GNSS) Galileo consists of In-Orbit Validation (IOV) and Full Operational Capability (FOC) spacecraft. The first pair of FOC satellites was launched into an incorrect, highly eccentric orbital plane with a lower than nominal inclination angle. All Galileo satellites are equipped with satellite laser ranging (SLR) retroreflectors which allow, for example, for the assessment of the orbit quality or for the SLR–GNSS co-location in space. The number of SLR observations to Galileo satellites has been continuously increasing thanks to a series of intensive campaigns devoted to SLR tracking of GNSS satellites initiated by the International Laser Ranging Service. This paper assesses systematic effects and quality of Galileo orbits using SLR data with a main focus on Galileo satellites launched into incorrect orbits. We compare the SLR observations with respect to microwave-based Galileo orbits generated by the Center for Orbit Determination in Europe (CODE) in the framework of the International GNSS Service Multi-GNSS Experiment for the period 2014.0–2016.5. We analyze the SLR signature effect, which is characterized by the dependency of SLR residuals with respect to various incidence angles of laser beams for stations equipped with single-photon and multi-photon detectors. Surprisingly, the CODE orbit quality of satellites in the incorrect orbital planes is not worse than that of nominal FOC and IOV orbits. The RMS of SLR residuals is even lower by 5.0 and 1.5 mm for satellites in the incorrect orbital planes than for FOC and IOV satellites, respectively. The mean SLR offsets equal \(-44.9, -35.0\), and \(-22.4\) mm for IOV, FOC, and satellites in the incorrect orbital plane. Finally, we found that the empirical orbit models, which were originally designed for precise orbit determination of GNSS satellites in circular orbits, provide fully appropriate results also for highly eccentric orbits with variable linear and angular velocities.  相似文献   
129.
130.
We consider the effect of compressibility on mixed Ekman–Hartmann boundary layers on an infinite plane (z = 0), in the presence of an external magnetic field oblique to the boundary. The aim is to investigate the influence of the magnetic pressure on the fluid density, and hence, via mass conservation, on the mass flow into or out of the boundary layer. We find that if the z-component of vorticity in the main flow, immediately above the boundary layer, is negative, then there is a competition between Ekman suction and the magnetic pressure effect. Indeed, as the magnetic field strength is increased, the magnetic pumping may overcome the Ekman suction produced by anti-cyclonic main flow vortices. Such a mechanism, based on the competition between these effects, may be of importance for understanding the dynamics of the magnetic field in stellar (or planetary) interiors. For the solar tachocline, we find that the analysed magnetic pressure effect is unlikely to play a significant role; however, we give examples of what changes in the assumed scalings would be necessary for the effect to become important.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号