首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   4篇
测绘学   1篇
大气科学   26篇
地球物理   6篇
地质学   39篇
海洋学   14篇
天文学   14篇
  2021年   2篇
  2018年   4篇
  2017年   2篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2011年   2篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   4篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   5篇
  2000年   1篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1990年   3篇
  1989年   1篇
  1986年   4篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1978年   1篇
  1974年   2篇
  1971年   2篇
  1970年   2篇
  1967年   1篇
  1966年   1篇
  1963年   3篇
  1962年   1篇
  1960年   1篇
  1955年   1篇
  1941年   1篇
  1931年   1篇
  1929年   1篇
  1928年   3篇
  1927年   2篇
  1921年   1篇
排序方式: 共有100条查询结果,搜索用时 31 毫秒
21.
In an inversion-capped planetary boundary layer (PBL), the structure of the turbulent fluxes as well as the height of the inversion are determined by the interaction of turbulent mixing in the PBL, large-scale subsidence above the PBL and radiational cooling. Here the sensitivity of the inversion height and of the turbulent fluxes due to radiational processes is investigated with the aid of a three-layered model for a well mixed PBL. For an example of the Trade-Wind region, the inversion height (i.e., the difference between surface pressure and pressure at the inversion level) varies between 46 and 257 mb and the surface flux of moist static energy between 417 and 99 W m-2, if the (mean) radiative net flux divergence for both the inversion and the well-mixed layer is changed over a reasonable range of values. None of the parameterization schemes existing in the literature is able to describe these radiational effects in an appropriate way. This is due to the fact that these parameterizations are either not or not flexibly enough linked to the thermodynamical model parameter. Therefore the demand for an adequate parameterization of the radiational influence in a well-mixed PBL under a subsidence inversion is obvious.  相似文献   
22.
The type of inversion discussed in this paper is essentially defined by subsidence, mixing due to thermally generated turbulent energy and a radiative flux difference at the inversion. A concept similar to that of Lilly (1968) is applied, assuming a well-mixed layer below the inversion and including advective and radiative processes.The characteristics of the inversion and of the whole PBL (e.g., height of inversion, height of cloud base, strength of inversion, flux-profiles) are investigated for their dependence on external parameters such as horizontal wind field divergence, advection, surface temperature excess, wind speed and surface temperature. This is done for steady-state conditions and gives considerable insight into the processes maintaining the type of inversion under consideration.A second goal is to present typical inversion structures, which can be found in certain climatic regions. The profiles of the state parameters and the energy-fluxes for the Trade-Wind region, the cold water area off the west-coast of California, the Norwegian Sea and the Arctic Ocean differ considerably.  相似文献   
23.
Meteorological data, ozone mixing ratios, and photolysis frequencies for the period August 2 to August 24, 1994, are presented and discussed in support of the field campaign POPCORN (Photochemistry of Plant Emitted Compounds and OH Radicals in Northeastern Germany). Measurements of temperature, ozone, and wind speed at different heights are used to evaluate micro-meteorological parameters. The observations provide information about local influences on the air mass composition. The analysis of radio sonde data of nearby stations provides the height of the planetary boundary layer.  相似文献   
24.
During the period of 1991–1993 two strong high energy γ-ray flares were observed by the Compton Gamma Ray Observatory in the flat spectrum radio source PKS 0528+134. They were associated with strong mm-radio outbursts with a few months time-delays. In this paper the spectral energy distributions (SED) of the radiations in the γ-hand X-ray and the IR-optical bands are analysed. It is shown that the high energy γ-ray radiation may be due to the inverse Compton scattering of the ambient UV and soft X-ray photons by the relativistic electrons in the jet. Basing on the comparison between the properties of the synchrotron radiation of the γ-ray source and the spectral evolution of the mm-radio outbursts, the evolutional relationship between the γ-ray emitting blobs and the mm-radio emitting blobs is discussed.  相似文献   
25.
Frontal substructures within the planetary boundary layer   总被引:2,自引:0,他引:2  
A two-dimensional mesoscale model, extended by a TKE closure for the subgrid-scale terms and coupled with a soil model, is used to investigate the role of the Planetary Boundary Layer (PBL) for the development and the substructures of two different types of cold fronts. The effects of turbulent friction, large-scale (geostrophic) forcing and the diurnal variation of the terms of the surface energy balance (SEB) equation on the frontal development are studied by 10 different model runs. The ageostrophic cross-frontal circulation in the lowest two kilometres of a cold front results from friction as well as from large-scale forcing. The first one dominates the PBL processes and causes a special boundary-layer structure, which becomes apparent through the existence of seven characteristic zones defined for the x-z cross sections of potential temperature. The arrangement of these characteristic zones depends on the sense of rotation of the frictionally induced part of the ageostrophic circulation and hence on the direction of the along-front jet within the boundary layer. The daytime increase of the terms of the SEB equation for a midlatitude midsummer case leads to a strong enhancement of the frictionally induced cross-frontal circulation. The arrangement of the seven characteristic zones, however, is approximately conserved.  相似文献   
26.
Center-to-limb observations of the Ki 7699 line made on 30 days over a five-year period using the McMath-Pierce Solar Telescope at Kitt Peak are presented. Both a relative and absolute limb effect have been derived from the data. Our determination of the limb effect in Ki 7699 shows a linear increase to the limb amounting to about 40 m s–1.Operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.  相似文献   
27.
John D. Monnier  Stefan Kraus  Michael J. Ireland  Fabien Baron  Amelia Bayo  Jean-Philippe Berger  Michelle Creech-Eakman  Ruobing Dong  Gaspard Duchêne  Catherine Espaillat  Chris Haniff  Sebastian Hönig  Andrea Isella  Attila Juhasz  Lucas Labadie  Sylvestre Lacour  Stephanie Leifer  Antoine Merand  Ernest Michael  Stefano Minardi  Christoph Mordasini  David Mozurkewich  Johan Olofsson  Claudia Paladini  Romain Petrov  Jörg-Uwe Pott  Stephen Ridgway  Stephen Rinehart  Keivan Stassun  Jean Surdej  Theo ten Brummelaar  Neal Turner  Peter Tuthill  Kerry Vahala  Gerard van Belle  Gautam Vasisht  Ed Wishnow  John Young  Zhaohuan Zhu 《Experimental Astronomy》2018,46(3):517-529
The Planet Formation Imager (PFI, www.planetformationimager.org) is a next-generation infrared interferometer array with the primary goal of imaging the active phases of planet formation in nearby star forming regions. PFI will be sensitive to warm dust emission using mid-infrared capabilities made possible by precise fringe tracking in the near-infrared. An L/M band combiner will be especially sensitive to thermal emission from young exoplanets (and their disks) with a high spectral resolution mode to probe the kinematics of CO and H2O gas. In this paper, we give an overview of the main science goals of PFI, define a baseline PFI architecture that can achieve those goals, point at remaining technical challenges, and suggest activities today that will help make the Planet Formation Imager facility a reality.  相似文献   
28.
The in situ measurement of Sr isotopes in carbonates by MC‐ICP‐MS is limited by the availability of suitable microanalytical reference materials (RMs), which match the samples of interest. Whereas several well‐characterised carbonate reference materials for Sr mass fractions > 1000 µg g?1 are available, there is a lack of well‐characterised carbonate microanalytical RMs with lower Sr mass fractions. Here, we present a new synthetic carbonate nanopowder RM with a Sr mass fraction of ca. 500 µg g?1 suitable for microanalytical Sr isotope research (‘NanoSr’). NanoSr was analysed by both solution‐based and in situ techniques. Element mass fractions were determined using EPMA (Ca mass fraction), as well as laser ablation and solution ICP‐MS in different laboratories. The 87Sr/86Sr ratio was determined by well‐established bulk methods for Sr isotope measurements and is 0.70756 ± 0.00003 (2s). The Sr isotope microhomogeneity of the material was determined by LA‐MC‐ICP‐MS, which resulted in 87Sr/86Sr ratios of 0.70753 ± 0.00007 (2s) and 0.70757 ± 0.00006 (2s), respectively, in agreement with the solution data within uncertainties. Thus, this new reference material is well suited to monitor and correct microanalytical Sr isotope measurements of low‐Sr, low‐REE carbonate samples. NanoSr is available from the corresponding author.  相似文献   
29.
30.
This paper presents the development of a Regional Neural Network for Water Level (RNN_WL) predictions, with an application to the coastal inlets along the South Shore of Long Island, New York. Long-term water level data at coastal inlets are important for studying coastal hydrodynamics sediment transport. However, it is quite common that long-term water level observations may be not available, due to the high cost of field data monitoring. Fortunately, the US National Oceanographic and Atmospheric Administration (NOAA) has a national network of water level monitoring stations distributed in regional scale that has been operating for several decades. Therefore, it is valuable and cost effective for a coastal engineering study to establish the relationship between water levels at a local station and a NOAA station in the region. Due to the changes of phase and amplitude of water levels over the regional coastal line, it is often difficult to obtain good linear regression relationship between water levels from two different stations. Using neural network offers an effective approach to correlate the non-linear input and output of water levels by recognizing the historic patterns between them. In this study, the RNN_WL model was developed to enable coastal engineers to predict long-term water levels in a coastal inlet, based on the input of data in a remote NOAA station in the region. The RNN_WL model was developed using a feed-forwards, back-propagation neural network structure with an optimized training algorithm. The RNN_WL model can be trained and verified using two independent data sets of hourly water levels.The RNN_WL model was tested in an application to Long Island South Shore. Located about 60–100 km away from the inlets there are two permanent long-term water level stations, which have been operated by NOAA since the1940s. The neural network model was trained using hourly data over a one-month period and validated for another one-month period. The model was then tested over year-long periods. Results indicate that, despite significant changes in the amplitudes and phases of the water levels over the regional study area, the RNN_WL model provides very good long-term predictions of both tidal and non-tidal water levels at the regional coastal inlets. In order to examine the effects of distance on the RNN_WL model performance, the model was also tested using water levels from other remote NOAA stations located at longer distances, which range from 234 km to 591 km away from the local station at the inlets. The satisfactory results indicate that the RNN_WL model is able to supplement long-term historical water level data at the coastal inlets based on the available data at remote NOAA stations in the coastal region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号