首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
地球物理   2篇
地质学   1篇
天文学   29篇
  2022年   1篇
  2019年   1篇
  2014年   1篇
  2009年   2篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1999年   2篇
  1998年   2篇
  1990年   2篇
  1988年   4篇
排序方式: 共有32条查询结果,搜索用时 31 毫秒
21.
In this paper we show that switch-on and switch-off shocks are allowed by the shock equations of relativistic MHD and have similar properties to their Newtonian counterparts. Just like in Newtonian MHD they are limits of fast and slow shock solutions and as such they may be classified as weakly evolutionary shocks.  相似文献   
22.
23.
24.
The dynamics of accretion discs around galactic and extragalactic black holes may be influenced by their magnetic field. In this paper, we generalize the fully relativistic theory of stationary axisymmetric tori in Kerr metric of Abramowicz, Jaroszynski & Sikora by including strong toroidal magnetic field and construct analytic solutions for barotropic tori with constant angular momentum. This development is particularly important for the general relativistic computational magnetohydrodynamics that suffers from the lack of exact analytic solutions that are needed to test computer codes.  相似文献   
25.
26.
The large-scale flow produced by classical and relativistic jets in a uniform external medium is explored using a combination of general arguments and numerical simulations. We find that in both cases, jets with finite initial opening angles are recollimated by the high pressure in the cocoon and that the outer flow becomes approximately self-similar at large times. However, if the opening angle is significantly less than 20°, then there is an intermediate stage during which the working surface propagates at a constant speed, which is of the same order as that in the jet. The behaviour of the relativistic and classical jets is very similar, except that the relativistic jets generate lighter cocoons. Application of the model to Cygnus A gives estimates of the source age and advance speed which agree very well with spectral ageing observations. Quantitative estimates and general arguments suggest that the regularly spaced knots in the Cygnus A jet can be interpreted as shocks associated with reconfinement of an initially free jet, knot 3 of the Cygnus A jet being identified with the reflection point of the reconfinement shock. However, the model predicts too large an initial opening angle for the Cygnus A jets. It is possible that this discrepancy is due to our imposition of axisymmetry which allows the numerical jets to become much better collimated after the reconfinement than they would be in the three-dimensional case. Further study is needed to test this idea.  相似文献   
27.
28.
The time-dependent general relativistic equations of degenerate electrodynamics are solved numerically in order to study the mechanism of the electromagnetic extraction of the rotational energy of black holes. We performed a series of 2D runs for black holes with specific angular momentum, a , from 0.1 to 0.9 and for a monopole magnetic field assuming axisymmetry. In the inner region of the wind, the solution quickly settles to a steady state with an outgoing Poynting flux. In all cases the angular velocity of the magnetic field lines is almost half the angular velocity of the black hole. Thus, at least for the configuration considered, the Blandford–Znajek mechanism operates near its maximum power output.  相似文献   
29.
The Crab nebula is regarded as one of the most important “cosmic laboratories” in astrophysics, which has made a bigger impact on the development of astronomy than any other single object beyond the solar system. The most intriguing recent result is the completely unexpected discovery of a peculiar “jet-torus” structure in the inner part of the nebula. Similar structures were found later in other Crab-like nebulae. This discovery clearly indicates significant anisotropy of the wind from the Crab pulsar which has been ignored so far in simplified theoretical models of the nebula. Fortunately, the impressive progress in computational relativistic magnetohydrodynamics in recent years has made possible to study the Crab nebula without making such a drastic simplification of the problem. In this paper we present the results of the first study of such kind. They provide a likely explanation of the jet-torus pattern and show that the flow in the nebula is much more complex than it has been widely believed.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号