首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
地球物理   2篇
地质学   1篇
天文学   29篇
  2022年   1篇
  2019年   1篇
  2014年   1篇
  2009年   2篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1999年   2篇
  1998年   2篇
  1990年   2篇
  1988年   4篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
11.
Relativistic shocks can accelerate particles by the first-order Fermi mechanism; the particles then emit synchrotron emission in the post-shock gas. This process is of particular interest in the models used for the afterglow of gamma-ray bursts. In this paper we use recent results in the theory of particle acceleration at highly relativistic shocks to model the synchrotron emission in an evolving, inhomogeneous and highly relativistic flow. We have developed a numerical code that integrates the relativistic Euler equations for fluid dynamics with a general equation of state, together with a simple transport equation for the accelerated particles. We present tests of this code and, in addition, we use it to study the gamma-ray burst afterglow predicted by the fireball model, along with the hydrodynamics of a spherically-symmetric relativistic blast wave.
We find that, while broadly speaking the behaviour of the emission is similar to that already predicted with semi-analytic approaches, the detailed behaviour is somewhat different. The 'breaks' in the synchrotron spectrum behave differently with time, and the spectrum above the final break is harder than had previously been expected. These effects are due to the incorporation of the geometry of the (spherical) blast wave, along with relativistic beaming and adiabatic cooling of the energetic particles leading to a mix, in the observed spectrum, between recently injected 'uncooled' particles and the older 'cooled' population in different parts of the evolving, inhomogeneous flow.  相似文献   
12.
13.
14.
15.
16.
17.
Results of field studies of water chemistry in the Upper Volga and some its tributaries in the reach between the Volga source and Tver City, as well as in lakes Sterzh, Vselug, Peno, and Volgo, which are constituent parts of the Verkhnevolzhskoe Reservoir, as well as Selizharovskii Pool of Lake Seliger. The year-to-year and season-to-season dynamics of the hydrochemical regime of the examined water bodies and their variations downstream the Volga under the effect of natural and anthropogenic factors are analyzed.  相似文献   
18.
The collapse of massive stars may result in the formation of accreting black holes in their interiors. The accreting stellar matter may advect substantial magnetic flux on to the black hole and promote the release of its rotational energy via magnetic stresses (the Blandford–Znajek mechanism). In this paper we explore whether this process can explain the stellar explosions and relativistic jets associated with long gamma-ray bursts. In particular, we show that the Blandford–Znajek mechanism is activated when the rest mass–energy density of matter drops below the energy density of the magnetic field in the near vicinity of the black hole (within its ergosphere). We also discuss whether such a strong magnetic field is in conflict with the rapid rotation of the stellar core required in the collapsar model, and suggest that the conflict can be avoided if the progenitor star is a component of a close binary. In this case the stellar rotation can be sustained via spin-orbital interaction. In an alternative scenario the magnetic field is generated in the accretion disc, but in this case the magnetic flux through the black hole ergosphere is not expected to be sufficiently high to explain the energetics of hypernovae by the BZ mechanism alone. However, this energy deficit can be recovered via the additional power provided by the disc.  相似文献   
19.
Doklady Earth Sciences - Long-range sound propagation in the deep ocean is considered. Attention is concentrated on the procedure of acoustic wavefield refocusing by means of the wavefront...  相似文献   
20.
The propagation of light highly relativistic jets carrying a toroidal magnetic field is studied numerically. The results show that jets with high Poynting flux develop the conspicuous nose cones discovered earlier in simulations of classical magnetized jets. The size of the nose cone is significantly reduced in kinetic energy-dominated jets, which develop extensive cocoons. The magnetic field nevertheless plays a significant role in the jet–cocoon dynamics by allowing self-confined flows. The results are explained in terms of the properties of perpendicular magnetohydrodynamic shocks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号