首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   917篇
  免费   32篇
  国内免费   21篇
测绘学   8篇
大气科学   121篇
地球物理   191篇
地质学   364篇
海洋学   30篇
天文学   228篇
综合类   4篇
自然地理   24篇
  2021年   13篇
  2020年   13篇
  2019年   11篇
  2018年   13篇
  2017年   13篇
  2016年   23篇
  2015年   27篇
  2014年   28篇
  2013年   43篇
  2012年   41篇
  2011年   43篇
  2010年   35篇
  2009年   48篇
  2008年   49篇
  2007年   40篇
  2006年   41篇
  2005年   41篇
  2004年   33篇
  2003年   23篇
  2002年   28篇
  2001年   19篇
  2000年   22篇
  1999年   19篇
  1998年   15篇
  1997年   7篇
  1996年   13篇
  1995年   11篇
  1994年   14篇
  1993年   10篇
  1992年   8篇
  1991年   17篇
  1990年   9篇
  1989年   6篇
  1988年   11篇
  1987年   8篇
  1986年   7篇
  1985年   8篇
  1984年   12篇
  1983年   13篇
  1981年   16篇
  1980年   12篇
  1979年   7篇
  1978年   12篇
  1977年   8篇
  1976年   13篇
  1975年   8篇
  1974年   6篇
  1973年   10篇
  1972年   6篇
  1960年   4篇
排序方式: 共有970条查询结果,搜索用时 15 毫秒
141.
142.
In order to meet the challenge of climate change while allowing for continued economic development, the world will have to adopt a net zero carbon energy infrastructure. Due to the world’s large stock of low-cost fossil fuels, there is strong motivation to explore the opportunities for capturing the CO2 that is produced in the combustion of fossil fuels and keeping it out of the atmosphere. Three distinct sets of technologies are needed to allow for climate neutral use of fossil fuels: (1) capture of CO2 at concentrated sources like electric power plants, future hydrogen production plants and steel and cement plants; (2) capture of CO2 from the air; and (3) the safe and permanent storage of CO2 away from the atmosphere. A strong regime of carbon accounting is also necessary to gain the public’s trust in the safety and permanence of CO2 storage. This paper begins with an extensive overview of carbon capture and storage technologies, and then presents a vision for the potential implementation of carbon capture and storage, drawing upon new ideas such as air capture technology, leakage insurance, and monitoring using a radioactive isotope such as C-14. These innovations, which may provide a partial solution for managing the risks associated with long-term carbon storage, are not well developed in the existing literature and deserve greater study.  相似文献   
143.
华东稻麦轮作农田CH4、N2O和NO排放特征   总被引:2,自引:0,他引:2  
利用同步自动观测系统对华东稻麦轮作农田的CH4、N2O和NO排放进行了长期连续观测,分析了这3种气体排放的季节特征及决定因素,结果表明,华东稻麦轮作农田的CH4、N2O和NO排放具有完全不同的季节变化形式。CH4的排放发生在水稻生长期,其他阶段排放不明显,土壤水分状况是决定整个轮作周期内CH4排放变化的主要因素。N2O排放具有"冬季无,水田少,旱地多"的季节变化特点,尤其以旱地阶段的排放为主,土壤水分状况和温度共同决定着N2O排放的季节变化形式。NO排放具有"冬季无,水田很少,春季旱地多于秋季旱地"的季节分布特点,轮作周期内97.3%±0.6%的NO排放都发生在除冬季以外的旱地阶段,NO排放的季节变化形式由土壤水分状况和温度共同决定。大多数情况下稻田CH4和N2O排放呈互为消长的关系,但在烤田期间,二者却有时甚至同时出现高排放。在N2O日平均排放通量小于5 mg.m-2.h-1时,稻麦轮作农田的N2O和NO排放呈明显的互为消长关系,但大于5 mg.m-2.h-1时,N2O排放很强,同时NO排放也很强。  相似文献   
144.
145.
We present results from two high-resolution hydrodynamical simulations of protocluster regions at   z ≃ 2.1  . The simulations have been compared to observational results for the so-called Spiderweb galaxy system, the core of a putative protocluster region at   z = 2.16  , found around a radio galaxy. The simulated regions have been chosen so as to form a poor cluster with   M 200≃ 1014  h −1 M  (C1) and a rich cluster with   M 200≃ 2 × 1015  h −1 M  (C2) at   z = 0  . The simulated protoclusters show evidence of ongoing assembly of a dominating central galaxy. The stellar mass of the brightest cluster galaxy of the C2 system is in excess with respect to observational estimates for the Spiderweb galaxy, with a total star formation rate which is also larger than indicated by observations. We find that the projected velocities of galaxies in the C2 cluster are consistent with observations, while those measured for the poorer cluster C1 are too low compared with the observed velocities. We argue that the Spiderweb complex resembles the high-redshift progenitor of a rich galaxy cluster. Our results indicate that the included supernovae feedback is not enough to suppress star formation in these systems, supporting the need of introducing active galactic nuclei feedback. According to our simulations, a diffuse atmosphere of hot gas in hydrostatic equilibrium should already be present at this redshift, and enriched at a level comparable to that of nearby galaxy clusters. The presence of this gas should be detectable with future deep X-ray observations.  相似文献   
146.
We investigate the properties of optically passive spirals and dusty red galaxies in the A901/2 cluster complex at redshift ∼0.17 using rest-frame near-ultraviolet–optical spectral energy distributions, 24-μm infrared data and Hubble Space Telescope morphologies from the STAGES data set. The cluster sample is based on COMBO-17 redshifts with an rms precision of  σ cz ≈ 2000 km s−1  . We find that 'dusty red galaxies' and 'optically passive spirals' in A901/2 are largely the same phenomenon, and that they form stars at a substantial rate, which is only four times lower than that in blue spirals at fixed mass. This star formation is more obscured than in blue galaxies and its optical signatures are weak. They appear predominantly in the stellar mass range of  log  M */M=[10, 11]  where they constitute over half of the star-forming galaxies in the cluster; they are thus a vital ingredient for understanding the overall picture of star formation quenching in clusters. We find that the mean specific star formation rate (SFR) of star-forming galaxies in the cluster is clearly lower than in the field, in contrast to the specific SFR properties of blue galaxies alone, which appear similar in cluster and field. Such a rich red spiral population is best explained if quenching is a slow process and morphological transformation is delayed even more. At  log  M */M < 10  , such galaxies are rare, suggesting that their quenching is fast and accompanied by morphological change. We note that edge-on spirals play a minor role; despite being dust reddened they form only a small fraction of spirals independent of environment.  相似文献   
147.
Various radio observations have shown that the hot atmospheres of galaxy clusters are magnetized. However, our understanding of the origin of these magnetic fields, their implications on structure formation and their interplay with the dynamics of the cluster atmosphere, especially in the centres of galaxy clusters, is still very limited. In preparation for the upcoming new generation of radio telescopes (like Expanded Very Large Array, Low Wavelength Array, Low Frequency Array and Square Kilometer Array), a huge effort is being made to learn more about cosmological magnetic fields from the observational perspective. Here we present the implementation of magnetohydrodynamics (MHD) in the cosmological smoothed particle hydrodynamics (SPH) code gadget . We discuss the details of the implementation and various schemes to suppress numerical instabilities as well as regularization schemes, in the context of cosmological simulations. The performance of the SPH–MHD code is demonstrated in various one- and two-dimensional test problems, which we performed with a fully, three-dimensional set-up to test the code under realistic circumstances. Comparing solutions obtained using athena , we find excellent agreement with our SPH–MHD implementation. Finally, we apply our SPH–MHD implementation to galaxy cluster formation within a large, cosmological box. Performing a resolution study we demonstrate the robustness of the predicted shape of the magnetic field profiles in galaxy clusters, which is in good agreement with previous studies.  相似文献   
148.
Gamma-ray astronomy is devoted to study nuclear and elementary particle astrophysics and astronomical objects under extreme conditions of gravitational and electromagnetic forces, and temperature. Because signals from gamma rays below 1 TeV cannot be recorded on ground, observations from space are required. The photoelectric effect is dominant <100 keV, Compton scattering between 100 keV and 10 MeV, and electron–positron pair production at energies above 10 MeV. The sun and some gamma ray burst sources are the strongest gamma ray sources in the sky. For other sources, directionality is obtained by shielding / masks at low energies, by using the directional properties of the Compton effect, or of pair production at high energies. The power of angular resolution is low (fractions of a degree, depending on energy), but the gamma sky is not crowded and sometimes identification of sources is possible by time variation. The gamma ray astronomy time line lists Explorer XI in 1961, and the first discovery of gamma rays from the galactic plane with its successor OSO-3 in 1968. The first solar flare gamma ray lines were seen with OSO-7 in 1972. In the 1980’s, the Solar Maximum Mission observed a multitude of solar gamma ray phenomena for 9 years. Quite unexpectedly, gamma ray bursts were detected by the Vela-satellites in 1967. It was 30 years later, that the extragalactic nature of the gamma ray burst phenomenon was finally established by the Beppo–Sax satellite. Better telescopes were becoming available, by using spark chambers to record pair production at photon energies >30 MeV, and later by Compton telescopes for the 1–10 MeV range. In 1972, SAS-2 began to observe the Milky Way in high energy gamma rays, but, unfortunately, for a very brief observation time only due to a failure of tape recorders. COS-B from 1975 until 1982 with its wire spark chamber, and energy measurement by a total absorption counter, produced the first sky map, recording galactic continuum emission, mainly from interactions of cosmic rays with interstellar matter, and point sources (pulsars and unidentified objects). An integrated attempt at observing the gamma ray sky was launched with the Compton Observatory in 1991 which stayed in orbit for 9 years. This large shuttle-launched satellite carried a wire spark chamber “Energetic Gamma Ray Experiment Telescope” EGRET for energies >30 MeV which included a large Cesium Iodide crystal spectrometer, a “Compton Telescope” COMPTEL for the energy range 1–30 MeV, the gamma ray “Burst and Transient Source Experiment” BATSE, and the “Oriented Scintillation-Spectrometer Experiment” OSSE. The results from the “Compton Observatory” were further enlarged by the SIGMA mission, launched in 1989 with the aim to closely observe the galactic center in gamma rays, and INTEGRAL, launched in 2002. From these missions and their results, the major features of gamma ray astronomy are:
  • Diffuse emission, i.e. interactions of cosmic rays with matter, and matter–antimatter annihilation; it is found, “...that a matter–antimatter symmetric universe is empirically excluded....”
  • Nuclear lines, i.e. solar gamma rays, or lines from radioactive decay (nucleosynthesis), like the 1.809 MeV line of radioactive 26Al;
  • Localized sources, i.e. pulsars, active galactic nuclei, gamma ray burst sources (compact relativistic sources), and unidentified sources.
  •   相似文献   
    149.
    150.
    The attributes of a ‘four-systems-tract’ sequence are at times difficult to identify in outcrop-scale carbonate successions. Poor exposure conditions, variable rates of sediment production, erosion and/or superposition of surfaces that are intrinsic to the nature of carbonate systems frequently conceal or remove its physical features. The late Early–Middle Aptian platform carbonates of the western Maestrat Basin (Iberian Chain, Spain) display facies heterogeneity enabling platform, platform-margin and slope geometries to be identified, and provide a case study that shows all the characteristics of a quintessential four systems tract-based sequence. Five differentiated systems tracts belonging to two distinct depositional sequences can be recognized: the Highstand Systems Tract (HST) and Forced Regressive Wedge Systems Tract (FRWST) of Depositional Sequence A; and the Lowstand Prograding Wedge Systems Tract (LPWST), Transgressive Systems Tract (TST) and subsequent return to a highstand stage of sea-level (HST) of Depositional Sequence B. An extensive carbonate platform of rudists and corals stacked in a prograding pattern marks the first HST. The FRWST is constituted by a detached, slightly cross-bedded calcarenite situated at the toe of the slope in a basinal position. The LPWST is characterized by a small carbonate platform of rudists and corals downlapping over the FRWST and onlapping landwards. The TST exhibits platform backstepping and marly sedimentation. Resumed carbonate production in shelf and slope settings characterizes the second HST. A basal surface of forced regression, a subaerial unconformity, a correlative conformity, a transgressive surface and a maximum flooding surface bound these systems tracts, and are well documented and widely mappable across the platform-to-basin transition area analyzed. Moreover, the sedimentary succession studied is made up of four types of parasequence that constitute stratigraphic units deposited within a higher-frequency sea-level cyclicity. Ten lithofacies associations form these basic accretional units. Each facies assemblage can be ascribed to an inferred depositional environment in terms of bathymetry, hydrodynamic conditions and trophic level. The architecture of the carbonate platform systems reflects a flat-topped non-rimmed depositional profile. Furthermore, these carbonate shelves are interpreted as having been formed in low hydrodynamic conditions. The long-term relative fall in sea-level occurred during the uppermost Early Aptian, which subaerially exposed the carbonate platform established during the first HST and resulted in the deposition of the FRWST, is interpreted as one of global significance. Moreover, a possible relationship between this widespread sea-level drop and glacio-eustasy seems plausible, and could be linked to the cooling event proposed in the literature for the late Early Aptian. Because of the important implications in sequence stratigraphy of this study, the sedimentary succession analyzed herein could serve as an analogue for the application of the four-systems-tract sequence stratigraphic methodology to carbonate systems.  相似文献   
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号