首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   1篇
地球物理   3篇
地质学   11篇
海洋学   6篇
天文学   14篇
自然地理   1篇
  2022年   1篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   7篇
  2013年   1篇
  2011年   2篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2002年   2篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1996年   1篇
  1989年   1篇
  1978年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
31.
Out-of-field stray-light spots of the Herschel telescope optics relative to the PACS and SPIRE instrument apertures were modeled by ray tracing simulations with the Advanced Systems Analysis Program (ASAP, by Breault Research Organization) prior to launch. The predicted stray-light behaviour was verified by dedicated stray-light calibration observations in-flight. This resulted in a special feature of the Herschel Science Mission Planning Software, marking the sky positions of stray-light spots by the very bright infrared planetary sources Venus, Mars, Jupiter, and Saturn, as well as the Moon, thus avoiding contamination of scientific photometric observations by out-of-field stray-light of these sources.  相似文献   
32.
This paper provides an overview of the PACS photometer flux calibration concept, in particular for the principal observation mode, the scan map. The absolute flux calibration is tied to the photospheric models of five fiducial stellar standards (α Boo, α Cet, α Tau, β And, γ Dra). The data processing steps to arrive at a consistent and homogeneous calibration are outlined. In the current state the relative photometric accuracy is ~2 % in all bands. Starting from the present calibration status, the characterization and correction for instrumental effects affecting the relative calibration accuracy is described and an outlook for the final achievable calibration numbers is given. After including all the correction for the instrumental effects, the relative photometric calibration accuracy (repeatability) will be as good as 0.5 % in the blue and green band and 2 % in the red band. This excellent calibration starts to reveal possible inconsistencies between the models of the K-type and the M-type stellar calibrators. The absolute calibration accuracy is therefore mainly limited by the 5 % uncertainty of the celestial standard models in all three bands. The PACS bolometer response was extremely stable over the entire Herschel mission and a single, time-independent response calibration file is sufficient for the processing and calibration of the science observations. The dedicated measurements of the internal calibration sources were needed only to characterize secondary effects. No aging effects of the bolometer or the filters have been found. Also, we found no signs of filter leaks. The PACS photometric system is very well characterized with a constant energy spectrum νF ν = λF λ = const as a reference. Colour corrections for a wide range of sources SEDs are determined and tabulated.  相似文献   
33.
34.
We present a flux calibration scheme for the PACS chopped point-source photometry observing mode based on the photometry of five stellar standard sources. This mode was used for science observations only early in the mission. Later, it was only used for pointing and flux calibration measurements. Its calibration turns this type of observation into fully validated data products in the Herschel Science Archive. Systematic differences in calibration with regard to the principal photometer observation mode, the scan map, are derived and amount to 5 ? 6 %. An empirical method to calibrate out an apparent response drift during the first 300 Operational Days is presented. The relative photometric calibration accuracy (repeatability) is as good as 1 % in the blue and green band and up to 5 % in the red band. Like for the scan map mode, inconsistencies among the stellar calibration models become visible and amount to 2 % for the five standard stars used. The absolute calibration accuracy is therefore mainly limited by the model uncertainty, which is 5 % for all three bands.  相似文献   
35.
Aerosol (soluble and total) iron and water-column dissolved (DFe, < 0.2 μm) and total dissolvable (TDFe, unfiltered) iron concentrations were determined in the Canary Basin and along a transect towards the Strait of Gibraltar, in order to sample across the Saharan dust plume. Cumulative dust deposition fluxes estimated from direct aerosol sampling during our one-month cruise are representative of the estimated deposition fluxes based on near surface water dissolved aluminium concentrations measured on board. Iron inventories in near surface waters combined with flux estimates confirmed the relatively short residence time of DFe in waters influenced by the Saharan dust plume (6–14 months). Enhanced near surface water concentrations of DFe (5.90–6.99 nM) were observed at the Strait of Gibraltar mainly due to inputs from metal-rich rivers. In the Canary Basin and the transect towards Gibraltar, DFe concentrations (0.07–0.76 nM) were typical of concentrations observed in the surface North Atlantic Waters, with the highest concentrations associated with higher atmospheric inputs in the Canary Basin. Depth profiles showed that DFe and TDFe were influenced by atmospheric inputs in this area with an accumulation of aeolian Fe in the surface waters. The sub-surface minimum of both DFe and TDFe suggests that a simple partitioning between dissolved and particulate Fe is not obvious there and that export may occur for both phases. At depths of around 1000–1300 m, both regeneration and Meddies may explain the observed maximum. Our data suggest that, in deep waters, higher particle concentrations likely due to dust storms may increase the scavenging flux and thus decrease DFe concentrations in deep waters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号