首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23233篇
  免费   233篇
  国内免费   129篇
测绘学   356篇
大气科学   1229篇
地球物理   4390篇
地质学   9090篇
海洋学   2281篇
天文学   5378篇
综合类   41篇
自然地理   830篇
  2022年   268篇
  2021年   438篇
  2020年   405篇
  2019年   469篇
  2018年   949篇
  2017年   882篇
  2016年   896篇
  2015年   368篇
  2014年   782篇
  2013年   1309篇
  2012年   907篇
  2011年   1098篇
  2010年   1071篇
  2009年   1225篇
  2008年   1056篇
  2007年   1237篇
  2006年   1076篇
  2005年   571篇
  2004年   538篇
  2003年   544篇
  2002年   562篇
  2001年   513篇
  2000年   411篇
  1999年   335篇
  1998年   323篇
  1997年   330篇
  1996年   256篇
  1995年   267篇
  1994年   241篇
  1993年   190篇
  1992年   209篇
  1991年   187篇
  1990年   200篇
  1989年   189篇
  1988年   159篇
  1987年   184篇
  1986年   176篇
  1985年   212篇
  1984年   200篇
  1983年   200篇
  1982年   189篇
  1981年   173篇
  1980年   165篇
  1979年   183篇
  1978年   159篇
  1977年   143篇
  1976年   135篇
  1975年   138篇
  1974年   129篇
  1973年   170篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
102.
103.
We present the results of the preliminary study of the comet Hale-Bopp spectrum obtained April 17, 1997 by K. Churyumov and F. Mussayev with the help of the 1-meter Zeiss reflector and the echelle spectrometer (spectral resolutionλ/Δ λ ≈ 50000), CCD and the long slit, oriented along the radius-vector(“Sun-comet direction”). Energy distributions for three selected regions including the C3, C2 (0-0) and CN(Δ ν = 0) molecules emissions of the comet Hale-Bopp spectrum were built. The rotational lines of the CN(Δ ν = 0) band were identified. The nature of the high emission peak near λ 4020 Å in the C3 band is discussed. The presence of the cometary continuum of the nonsolar origin is assumed.  相似文献   
104.
The physical meaning of the terms of the potential and kinetic energy expressions, expanded by means of the density variation function for a nonuniform self-gravitating sphere, is discussed. The terms of the expansions represent the energy and the moment of inertia of the uniform sphere, the energy and the moment of inertia of the nonuniformities interacting with the uniform sphere, and the energy of the nonuniformities interacting with each other. It follows from the physical meaning of the above components of the energy structure, and also from the observational fact of the expansion of the Universe that the phase transition, notably, fusion of particles and nuclei and condensation of liquid and solid phases of the expanded matter accompanied by release of energy, must be the physical cause of initial thermal and gravitational instability of the matter. The released kinetic energy being constrained by the general motion of the expansion, develops regional and local turbulent (cyclonic) motion of the matter, which should be the second physical effect responsible for the creation of celestial bodies and their rotation.  相似文献   
105.
106.
107.
The inflationary unvierse model predicts the density parameter 0 to be 1.0 with the cosmological constant 0 usually taken to be zero, whereas observational estimates give 00.2 and 010-57 cm–2. It was found, however, that the observed variation of angular diameter with redshift for extragalactic radio sources could be interpreted in terms of a low density universe with linear size evolution of the sources for either an inflationary model with 0 or an open model with =0.  相似文献   
108.
Observations made by the differential method in the H line have revealed longperiod (on a timescale of 40 to 80 min) line-of-sight velocity oscillations which increase in amplitude with distance from the centre to the solar limb and, as we believe, give rise to prominence oscillations. As a test, we present some results of simultaneous observations at the photospheric level where such periods are absent.Oscillatory processes in the solar chromosphere have been studied by many authors. Previous efforts in this vein led to the detection of shortperiod oscillations in both the mass velocities and radiation intensity (Deubner, 1981). The oscillation periods obtained do not, normally, exceed 10–20 min (Dubov, 1978). More recently, Merkulenko and Mishina (1985), using filter observations in the H line, found intensity fluctuations with periods not exceeding 78 min. However, the observing technique they used does not exclude the possibility that those fluctuations were due to the influence of the Earth's atmosphere. It is also interesting to note that in spectra obtained by Merkulenko and Mishina (1985), the amplitude of the 3 min oscillations is anomalously small and the 5 min period is altogether absent, while the majority of other papers treating the brightness oscillations in the chromosphere, do not report such periods in the first place. So far, we are not aware of any other evidence concerning the longperiod velocity oscillations in the chromosphere on a timescale of 40–80 min.Longperiod oscillations in prominences (filaments) in the range from 40 to 80 min, as found by Bashkirtsev et al. (1983) and Bashkirtsev and Mashnich (1984, 1985), indicate that such oscillations can exist in both the chromosphere and the corona (Hollweg et al., 1982).In this note we report on experimental evidence for the existence of longperiod oscillations of mass velocity in the solar chromosphere.  相似文献   
109.
110.
This paper considers the present state of mathematical geology. Three directions are recognized: applied, theoretical, and mathematical. Applied mathematical geology includes formal use of mathematics to solve problems and computer processing of data. Success is achieved by a correspondence of mathematical methods used to the nature of geological data. This correspondence can be demonstrated by purely mathematical means. Theoretical mathematical geology uses mathematics as a language of geology; however, a number of methodological problems must be solved: formalization of initial geological concepts and creation of a strict conceptual basis, substantiation of initial principles of mathematical simulation, creation of theoretical geological models, problems of elementary and coincidence in geology, and methodological substantiations of possibilities of any mathematical model to approximate geological models. The essense and significance of these problems are considered. The main task of mathematical geology is to prove its correspondence to the nature of the geological objects studied, geological data obtained, and geological problems solvable. Finally, the main problems of mathematical geology are not so much mathematical as geological and methodological.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号