首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   619篇
  免费   23篇
  国内免费   14篇
测绘学   17篇
大气科学   53篇
地球物理   161篇
地质学   166篇
海洋学   126篇
天文学   84篇
综合类   7篇
自然地理   42篇
  2021年   10篇
  2020年   10篇
  2019年   14篇
  2018年   13篇
  2017年   25篇
  2016年   21篇
  2015年   17篇
  2014年   21篇
  2013年   20篇
  2012年   21篇
  2011年   33篇
  2010年   38篇
  2009年   34篇
  2008年   29篇
  2007年   31篇
  2006年   26篇
  2005年   30篇
  2004年   15篇
  2003年   23篇
  2002年   19篇
  2001年   23篇
  2000年   16篇
  1999年   13篇
  1998年   16篇
  1997年   12篇
  1996年   11篇
  1995年   8篇
  1994年   8篇
  1993年   6篇
  1992年   6篇
  1991年   4篇
  1990年   5篇
  1989年   3篇
  1988年   5篇
  1987年   8篇
  1986年   3篇
  1985年   6篇
  1984年   2篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1979年   11篇
  1978年   5篇
  1977年   3篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1971年   3篇
  1955年   2篇
排序方式: 共有656条查询结果,搜索用时 31 毫秒
151.
A continuous flow method for the determination of ammonium concentration in seawater from a nanomolar to a micromolar level is described. To prevent spurious peaks derived from salinity difference, a gas-permeable hydrophobic membrane filter was used to separate the manifold into an outgassing section and an indophenol blue reaction section. The indophenol blue reaction section was adopted for colorimetric analysis and is equipped with a 1-m path length liquid capillary cell and a fiber-optic spectrometer, which is able to record the absorbance at multiple wavelengths. The minimum detection limit at wavelength 630 nm is 5.5 ± 1.8 nM, and the calibration curves are linear to at least 2,000 nM. In addition, the minimum detection limit at wavelength 530 nm was 13 ± 5.3 nM, and linear calibration curves were observed until at least 10,000 nM. The slopes of the calibration curves were similar for standards prepared using filtered seawater and ultrapure water. The ammonium concentration of the ultrapure water was similar to those of ion-exchanged water and unfiltered low-nutrient seawater, but was significantly lower than those of filtered seawater and solutions that contained sodium hydroxide. Therefore, ultrapure water is optimal for both blank and standard preparations because of its stable quality and availability. Given its large concentration range and the use of readily available blanks, this method is suitable for the determination of ammonium concentration and helps our understanding of ammonium dynamics in the ocean.  相似文献   
152.
153.
Wavenumber spectra of the martian atmosphere covering zonal wavenumbers s=1-6 were obtained as a function of latitude and season for the first time from the temperatures measured by the Thermal Emission Spectrometer onboard the Mars Global Surveyor. The stationary component tends to peak at s=2, where the martian topography has large amplitude, and drops rapidly at higher wavenumbers. The transient component in the middle and high latitudes tends to peak at s=1, which is lower than the most unstable wavenumber based on linear theories, and exhibits spectral slopes much flatter than the stationary component. In the equatorial region, the spectra of the transient component are almost flat, indicating that the organization of large-scale structures is less efficient in this region. The spectral shapes are similar between the 0.5 and 2.2 hPa surfaces, except that the slopes are slightly steeper at 0.5 than at 2.2 hPa, probably due to selective vertical transmission at low wavenumbers. The seasonal variation is relatively large in the middle and high latitudes, where the maximum power occurs in winter and the minimum occurs in summer, with an exception that the transient component is maximum in spring in the southern hemisphere. Intensification of s=1 transient waves is observed around the period of the initiation of global dust storms.  相似文献   
154.
By means of nanoscale surface observation, we have proposed a new approach for investigating fine crystals of cosmic materials to reveal their origin and growth conditions. Several different morphologies of polyhedral fine olivines with faceted faces have been found in Allende carbonaceous chondrite (4.5 byr in geochronological age). In the present work, molecular level topography of the faceted matrix olivine by Atomic Force Microscopy (AFM) has successfully been performed. The matrix olivine found to have preserved growth step pattern on its surface even though quite long time has passed since they formed in the early Solar System. The surface pattern suggests that the faceted matrix olivine could have been condensed from the gas phase, and possibly that these olivine crystals had continued to grow under a rapid cooling condition (0.1-1 K s−1). The estimated cooling rate agrees well with predictions based on hypothetical rapid heating and cooling events such as shock wave heating.  相似文献   
155.
We developed a seismometer system for a hard landing “penetrator” probe in the course of the former Japanese LUNAR-A project to deploy new seismic stations on the Moon. The penetrator seismometer system (PSS) consists of two short-period sensor components, a two-axis gimbal mechanism for orientation, and measurement electronics. To carry out seismic observations on the Moon using the penetrator, the seismometer system has to function properly in a lunar environment after a hard landing (impact acceleration of about 8000 G), and requires a signal-to-noise ratio to detect lunar seismic events. We evaluated whether the PSS could satisfactorily observe seismic events on the Moon by investigating the frequency response, noise level, and response to ground motion of our instrument in a simulated lunar environment after a simulated impact test. Our results indicate that the newly developed seismometer system can function properly after impact and is sensitive enough to detect seismic events on the Moon. Using this PSS, new seismic data from the Moon can be obtained during future lunar missions.  相似文献   
156.
A new means of incorporating radiative transfer into smoothed particle hydrodynamics (SPH) is introduced, which builds on the success of two previous methods – the polytropic cooling approximation as devised by Stamatellos et al. and flux-limited diffusion. This hybrid method preserves the strengths of its individual components, while removing the need for atmosphere matching or other boundary conditions to marry optically thick and optically thin regions. The code uses a non-trivial equation of state to calculate temperatures and opacities of SPH particles, which captures the effects of H2 dissociation, H0 ionization, He0 and He+ ionization, ice evaporation, dust sublimation, molecular absorption, bound-free and free–free transitions and electron scattering. The method is tested in several scenarios, including (i) the evolution of a  0.07 M  protoplanetary disc surrounding a  0.5 M  star; (ii) the collapse of a  1 M  protostellar cloud and (iii) the thermal relaxation of temperature fluctuations in a static homogeneous sphere.  相似文献   
157.
The photoluminescence (PL) and optical excitation spectra of baratovite in aegirine syenite from Dara-i-Pioz, Tien Shan Mts., Tajikistan and katayamalite in aegirine syenite from Iwagi Islet, Ehime, Japan were obtained at 300 and 80 K. Under short wave (253.7 nm) ultraviolet light, baratovite and katayamalite exhibited bright blue-white luminescence. The PL spectrum of baratovite at 300 K consisted of a wide band with a peak at approximately 406 nm and a full width at half maximum (FWHM) of approximately 6.32k cm−1. The excitation spectrum of the blue-white luminescence from baratovite at 300 K consisted of a prominent band with a peak at approximately 250 nm. The PL and excitation spectra of katayamalite were similar to those of baratovite. The luminescence from these minerals was attributed to the intrinsic luminescence from the TiO6 center.  相似文献   
158.
Based on the petrology of hydrothermally altered Archean basaltic greenstones, thermodynamic calculations of phase equilibria were conducted to estimate the composition of a high-temperature (∼350 °C) hydrothermal fluid in an Archean subseafloor basalt-hosted hydrothermal system. The results indicate that the hydrothermal fluid was highly alkaline attributed to the presence of calcite in the alteration minerals under a high-CO2 condition, and predict a generation of SiO2-rich, Fe-poor hydrothermal fluids in the Archean subseafloor hydrothermal system. The chemically reactive mixing zones between alkaline hydrothermal fluids and slightly acidic-neutral seawater are characterized by inverse pH and chemical polarity to modern hydrothermal systems, leading to extensive precipitation of silica and iron oxyhydroxides on/under the seafloor. Such processes can be responsible for the abiotic formation of voluminous chert and subseafloor silica dike, the mechanism of silicification, and the pH-controlled generation of banded iron formation that has been arising mainly from the redox chemistry in the Archean ocean. Such high-temperature alkaline fluids could have had a significant role not only in the early ocean geochemical processes but also in the early evolution of life.  相似文献   
159.
Mass depletion of bodies through successive collisional disruptions (i.e., collision cascade) is one of the most important processes in the studies of the asteroids belt, the Edgeworth-Kuiper belt, debris disks, and planetary formation. The collisional disruption is divided into two types, i.e., catastrophic disruption and cratering. Although some studies of the collision cascades neglected the effect of cratering, it is unclear which type of disruption makes a dominant contribution to the collision cascades. In the present study, we construct a simple outcome model describing both catastrophic disruption and cratering, which has some parameters characterizing the total ejecta mass, the mass of the largest fragment, and the power-law exponent of the size distribution of fragments. Using this simple outcome model with parameters, we examine the model dependence of the mass depletion time in collision cascades for neglect of coalescence of colliding bodies due to high collisional velocities. We find the cratering collisions are much more effective in collision cascades than collisions with catastrophic disruption in a wide region of the model parameters. It is also found that the mass depletion time in collision cascades is mainly governed by the total ejecta mass and almost insensitive to the mass of the largest fragment and the power-law exponent of fragments for a realistic parameter region. The total ejecta mass is usually determined by the ratio of the impact energy divided by the target mass (i.e. Q-value) to its threshold value for catastrophic disruption, as well as in our simple model. We derive a mass depletion time in collision cascades, which is determined by of the high-mass end of collision cascades. The mass depletion time derived with our model would be applicable to debris disks and planetary formation.  相似文献   
160.
Recent work in southern Ontario, Canada, demonstrates anomalously high vertical groundwater flow velocities (>1 m/year) through a thick (as much as 60 m), sandy silt till aquitard (Northern till), previously assumed to be of very low permeability (hydraulic conductivity <10–10 m/s). Rapid recharge is attributed to the presence of fractures and sedimentary heterogeneities within the till, but the field-scale flow regime is poorly understood. This study identifies the nature of physical groundwater pathways through the till and provides estimates of the associated groundwater fluxes. The aquitard groundwater flow system is characterized by integrating details of the outcrop and subsurface sedimentary characteristics of the till with field-based hydrogeologic investigation and numerical modeling. Outcrop and subsurface data identify a composite internal aquitard stratigraphy consisting of tabular till beds (till elements) separated by laterally continuous sheet-like sands and gravels (interbeds) and boulder pavements. Individual till elements contain sedimentary heterogeneities, including discontinuous sand and gravel lenses, vertical sand dikes, and zones of horizontal and vertical fractures. Hydrogeologic field investigations indicate a three-layer aquitard flow system, consisting of upper and lower zones of more hydraulically active and heterogeneous till separated by a middle unit of relatively lower hydraulic conductivity. Groundwater pathways and fluxes in the till were evaluated using a two-dimensional aquitard/aquifer flow model which indicates a step-wise flow mechanism whereby groundwater moves alternately downward along vertical pathways (fractures, sedimentary dikes) and laterally along horizontal sand interbeds within the till. This model is consistent with observed hydraulic-head and isotope profiles, and the presence of tritiated pore waters at various depths throughout the till. Simulations suggest that a bulk aquitard vertical hydraulic conductivity on the order of 1×10–9 m/s is required to reproduce observed hydraulic-head and tritium profiles. Electronic Publication  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号