首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   338篇
  免费   17篇
测绘学   12篇
大气科学   28篇
地球物理   74篇
地质学   119篇
海洋学   34篇
天文学   75篇
自然地理   13篇
  2022年   2篇
  2019年   4篇
  2018年   5篇
  2017年   10篇
  2016年   11篇
  2015年   7篇
  2014年   5篇
  2013年   15篇
  2012年   13篇
  2011年   13篇
  2010年   12篇
  2009年   16篇
  2008年   27篇
  2007年   17篇
  2006年   12篇
  2005年   12篇
  2004年   11篇
  2003年   15篇
  2002年   6篇
  2001年   7篇
  2000年   11篇
  1999年   7篇
  1998年   3篇
  1997年   4篇
  1996年   13篇
  1995年   7篇
  1994年   8篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1990年   4篇
  1988年   2篇
  1987年   3篇
  1986年   8篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   6篇
  1979年   5篇
  1978年   2篇
  1977年   5篇
  1975年   4篇
  1974年   4篇
  1972年   2篇
  1969年   1篇
  1968年   2篇
  1964年   1篇
  1956年   1篇
  1952年   1篇
  1940年   1篇
排序方式: 共有355条查询结果,搜索用时 31 毫秒
31.
Ultraviolet spectra of seven comets taken with the same instrument are presented. Comets P/Encke (1980), P/Tuttle (1980 h), P/Stephan-Oterma (1980 g), and Meier (1980 q) were observed during November-December 1980 with the International Ultraviolet Explorer (IUE) satellite observatory, while comets P/Borrelly (1980 i) and Panther (1980 u) were observed with IUE on 6 March 1981. The spectra of these comets are compared with those of comet Bradfield (1979 X), studied extensively earlier in 1980 with IUE, as well as with each other. In order to simplify the interpretation of the data and to minimize the dependence upon a specific model, the spectra are compared at approximately the same value of heliocentric distance whenever possible. Effects due to heliocentric velocity, geocentric distance, and optical depth are also discussed. All of the cometary spectra are remarkably similar, which suggests that these comets may have a common composition and origin.  相似文献   
32.
In the Precordillera of western Argentina, an isolated outcrop of Llandeilian siliciclastics and Caradocian limestones (Rio Sassito succession) reveals a complex interplay between the tectonic and the sedimentary history of the Precordillera during Middle and Late Ordovician times. The succession is composed of a lower siliciclastic interval and an upper carbonate interval and is bounded below and above by erosional unconformities. Dating of these unconformities, which in many places merged to form one single surface, demonstrates that the most important erosional event took place prior to the deposition of the Rio Sassito succession. This erosional event is correlated to extensional tectonics during continental breakup and the separation of the Precordillera from Laurentia. Block faulting with the formation of horst and graben structures provided the topography for the establishment of a pelagic carbonate platform during the Caradoc. In our view, there are no indications that these phenomena are related to the accretion of the Precordillera to Gondwana or to the formation of an Ordovician supercontinent. The carbonate sediments are typical of temperate-water settings, characterized by the absence of ooids, oncoids, and algae, and by the presence of abundant abraded bioclasts, intraclasts, and peloids. The inference of a temperate-water environment does not, as previously supposed, indicate the accretion of the Precordillera to Gondwana, but is more likely related to global cooling prior to the Ashgillian glaciation.  相似文献   
33.
34.
Petrological characteristics of basaltic rocks from the Tyrrhenian deep-sea are discussed and related to the geotectonic situation. For the first time, distinctly alkaline basalts (hawaiites) have been found in the Tyrrhenian deep-sea. These are typical within-plate basalts related to the tensional fracturing of the Tyrrhenian area. A suggested age of 100,000 years is among the youngest indications for the Tyrrhenian Sea volcanism. Since the Miocene, magmatic activity in the inner Tyrrhenian sea basin evolved from ocean-floor basalts to ocean island tholeiites and transitional basalts, with alkaline basalts as the most recent products. Seamounts in the southern part of the Tyrrhenian deep-sea (Palinuro, Marsili) add shoshonitic and calcalkaline lavas (some with high Mgvalue) to the complexity of the Tyrrhenian magmatic evolution.  相似文献   
35.
Effects of large organic material on channel form and fluvial processes   总被引:1,自引:0,他引:1  
Stream channel development in forested areas is profoundly influenced by large organic debris (logs, limbs and rootwads greater than 10 cm in diameter) in the channels. In low gradient meandering streams large organic debris enters the channel through bank erosion, mass wasting, blowdown, and collapse of trees due to ice loading. In small streams large organic debris may locally influence channel morphology and sediment transport processes because the stream may not have the competency to redistribute the debris. In larger streams flowing water may move large organic debris, concentrating it into distinct accumulations (debris jams). Organic debris may greatly affect channel form and process by: increasing or decreasing stability of stream banks; influencing development of midchannel bars and short braided reaches; and facilitating, with other favourable circumstances, development of meander cutoffs. In steep gradient mountain streams organic debris may enter the channel by all the processes mentioned for low gradient streams. In addition, considerable debris may also enter the channel by way of debris avalanches or debris torrents. In small to intermediate size mountain streams with steep valley walls and little or no floodplain or flat valley floor, the effects of large organic debris on the fluvial processes and channel form may be very significant. Debris jams may locally accelerate or retard channel bed and bank erosion and/or deposition; create sites for significant sediment storage; and produce a stepped channel profile, herein referred to as ‘organic stepping’, which provides for variable channel morphology and flow conditions. The effect of live or dead trees anchored by rootwads into the stream bank may not only greatly retard bank erosion but also influence channel width and the development of small scour holes along the channel beneath tree roots. Once trees fall into the stream, their influence on the channel form and process may be quite different than when they were defending the banks, and, depending on the size of the debris, size of the stream, and many other factors, their effects range from insignificant to very important.  相似文献   
36.
The OSIRIS camera onboard Rosetta successfully acquired images of asteroid 2867 Steins through a variety of color filters during the flyby on 5 September 2008. The best images of this 5 km diameter asteroid have a resolution of 78 m per pixel. We process the images by deconvolving with the point spread function and enlarging through the Mitchell-Netravali filter. The enhanced set is analyzed by means of various techniques (PCA, band ratios, stereo anaglyphs) to study surface morphology and search for variegation. We identify a landslide, which supports a YORP origin for Steins’ unusual diamond shape. In addition, we find that the interior of one of two large craters on the south pole is bluer than the rest of the body.  相似文献   
37.
A microwave technique for the measurement of ocean wave spectra has been compared with wave gauge output during extensive field testing. The method is based on the dual-frequency technique for detecting long ocean waves by matching the modulation of short waves with the beat wavelength between two transmitted microwave frequencies. The new method, however, utilizes three microwave frequencies in order to reduce mean backscatter not related to short-wave modulation. Two prototype scatterometers have been built using three frequencies at L-band and at Ku-band. Wave spectra have been measured by both radar systems which, when properly normalized, agree well with simultaneous in situ measurements taken by conventional wave gauges at the pier site. Thirteen sets of spectra have been computed, five of which correspond to a situation in which a local wind sea was generated and then decayed. The present experiment does not demonstrate the directionality of this new technique  相似文献   
38.
Abstract By mineral and bulk compositions, the Lewis Cliff (LEW) 88516 meteorite is quite similar to the ALHA77005 martian meteorite. These two meteorites are not paired because their mineral compositions are distinct, they were found 500 km apart in ice fields with different sources for meteorites, and their terrestrial residence ages are different. Minerals in LEW88516 include: olivine, pyroxenes (low- and high-Ca), and maskelynite (after plagioclase); and the minor minerals chromite, whitlockite, ilmenite, and pyrrhotite. Mineral grains in LEW88516 range up to a few mm. Texturally, the meteorite is complex, with regions of olivine and chromite poikilitically enclosed in pyroxene, regions of interstitial basaltic texture, and glass-rich (shock) veinlets. Olivine compositions range from Fo64 to Fo70, (avg. Fo67), more ferroan and with more variation than in ALHA77005 (Fo69 to Fo73). Pyroxene compositions fall between En77Wo4 and En65Wo15 and in clusters near En63Wo9 and En53Wo33, on average more magnesian and with more variation than in ALHA77005. Shock features in LEW88516 range from weak deformation through complete melting. Bulk chemical analyses by modal recombination of electron microprobe analyses, instrumental neutron activation, and radiochemical neutron activation confirm that LEW88516 is more closely related to ALHA77005 than to other known martian meteorites. Key element abundance ratios are typical of martian meteorites, as is its non-chondritic rare earth pattern. Differences between the chemical compositions of LEW88516 and ALHA77005 are consistent with slight differences in the proportions of their constituent minerals and not from fundamental petrogenetic differences. Noble gas abundances in LEW88516, like those in ALHA77005, show modest excesses of 40Ar and 129Xe from trapped (shock-implanted) gas. As with other ALHA77005 and the shergottite martian meteorites (except EETA79001), noble gas isotope abundances in LEW88516 are consistent with exposure to cosmic rays for 2.5–3 Ma. The absence of substantial effects of shielding from cosmic rays suggest LEW88516 spent this time as an object no larger than a few cm in diameter.  相似文献   
39.
We present a narrative of the eruptive events culminating in the cataclysmic January 15, 2022 eruption of Hunga Tonga-Hunga Ha'apai Volcano by synthesizing diverse preliminary seismic, volcanological, sound wave, and lightning data available within the first few weeks after the eruption occurred. The first hour of eruptive activity produced fast-propagating tsunami waves, long-period seismic waves, loud audible sound waves, infrasonic waves, exceptionally intense volcanic lightning and an unsteady volcanic plume that transiently reached—at 58 ?km—the Earth's mesosphere. Energetic seismic signals were recorded worldwide and the globally stacked seismogram showed episodic seismic events within the most intense periods of phreatoplinian activity, and they correlated well with the infrasound pressure waveform recorded in Fiji. Gravity wave signals were strong enough to be observed over the entire planet in just the first few hours, with some circling the Earth multiple times subsequently. These large-amplitude, long-wavelength atmospheric disturbances come from the Earth's atmosphere being forced by the magmatic mixture of tephra, melt and gasses emitted by the unsteady but quasi-continuous eruption from 0402±1–1800 UTC on January 15, 2022. Atmospheric forcing lasted much longer than rupturing from large earthquakes recorded on modern instruments, producing a type of shock wave that originated from the interaction between compressed air and ambient (wavy) sea surface. This scenario differs from conventional ideas of earthquake slip, landslides, or caldera collapse-generated tsunami waves because of the enormous (~1000x) volumetric change due to the supercritical nature of volatiles associated with the hot, volatile-rich phreatoplinian plume. The time series of plume altitude can be translated to volumetric discharge and mass flow rate. For an eruption duration of ~12 ?h, the eruptive volume and mass are estimated at 1.9 ?km3 and ~2 900 ?Tg, respectively, corresponding to a VEI of 5–6 for this event. The high frequency and intensity of lightning was enhanced by the production of fine ash due to magma—seawater interaction with concomitant high charge per unit mass and the high pre-eruptive concentration of dissolved volatiles. Analysis of lightning flash frequencies provides a rapid metric for plume activity and eruption magnitude. Many aspects of this eruption await further investigation by multidisciplinary teams. It represents a unique opportunity for fundamental research regarding the complex, non-linear behavior of high energetic volcanic eruptions and attendant phenomena, with critical implications for hazard mitigation, volcano forecasting, and first-response efforts in future disasters.  相似文献   
40.
We review the results of an extensive campaign to determine the physical, geological, and dynamical properties of asteroid (101955) Bennu. This investigation provides information on the orbit, shape, mass, rotation state, radar response, photometric, spectroscopic, thermal, regolith, and environmental properties of Bennu. We combine these data with cosmochemical and dynamical models to develop a hypothetical timeline for Bennu's formation and evolution. We infer that Bennu is an ancient object that has witnessed over 4.5 Gyr of solar system history. Its chemistry and mineralogy were established within the first 10 Myr of the solar system. It likely originated as a discrete asteroid in the inner Main Belt approximately 0.7–2 Gyr ago as a fragment from the catastrophic disruption of a large (approximately 100‐km), carbonaceous asteroid. It was delivered to near‐Earth space via a combination of Yarkovsky‐induced drift and interaction with giant‐planet resonances. During its journey, YORP processes and planetary close encounters modified Bennu's spin state, potentially reshaping and resurfacing the asteroid. We also review work on Bennu's future dynamical evolution and constrain its ultimate fate. It is one of the most Potentially Hazardous Asteroids with an approximately 1‐in‐2700 chance of impacting the Earth in the late 22nd century. It will most likely end its dynamical life by falling into the Sun. The highest probability for a planetary impact is with Venus, followed by the Earth. There is a chance that Bennu will be ejected from the inner solar system after a close encounter with Jupiter. OSIRIS‐REx will return samples from the surface of this intriguing asteroid in September 2023.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号