全文获取类型
收费全文 | 68篇 |
免费 | 2篇 |
专业分类
大气科学 | 3篇 |
地球物理 | 25篇 |
地质学 | 15篇 |
海洋学 | 11篇 |
天文学 | 9篇 |
自然地理 | 7篇 |
出版年
2023年 | 1篇 |
2021年 | 1篇 |
2019年 | 1篇 |
2018年 | 1篇 |
2017年 | 2篇 |
2016年 | 1篇 |
2015年 | 1篇 |
2014年 | 1篇 |
2012年 | 1篇 |
2011年 | 2篇 |
2010年 | 1篇 |
2009年 | 4篇 |
2008年 | 1篇 |
2007年 | 2篇 |
2006年 | 2篇 |
2005年 | 4篇 |
2004年 | 7篇 |
2003年 | 5篇 |
2002年 | 6篇 |
2001年 | 2篇 |
1999年 | 1篇 |
1998年 | 4篇 |
1997年 | 2篇 |
1996年 | 2篇 |
1995年 | 1篇 |
1993年 | 1篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1989年 | 2篇 |
1986年 | 1篇 |
1985年 | 2篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1980年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
排序方式: 共有70条查询结果,搜索用时 15 毫秒
51.
Evaluation of slope stability by finite element method using observed displacement of landslide 总被引:1,自引:0,他引:1
To monitor land deformation in detail, we ran a large-scale field test in which an artificial landslide was induced by the application of a load to a natural slope. The measured landslide displacement was reproduced numerically through the use of finite element model analysis with a two-dimensional elasto-viscoplastic model. The analysis suggested that the strength of the sliding surface decreased as the landslide mass moved. We propose a simple method for estimating safety factors. The method involves back-calculation of shear strength parameters through reproduction of observed landslide displacements and calculating the ratio of driving force to resisting force acting on the sliding surface as modeled by joint elements. This ratio, the “stability index”, shows the same trend as safety factors calculated by a two-dimensional limit equilibrium method and a shear strength reduction method that use back-calculated shear strength parameters estimated from the limit equilibrium state. The results indicate that the stability index may be applicable to the assessment of slope stability. 相似文献
52.
53.
R. Mjelde H. Shimamura T. Kanazawa S. Kodaira T. Raum H. Shiobara 《Tectonophysics》2003,369(3-4):199-218
Five lineaments on the volcanic Vøring Margin, NE Atlantic, have been identified in crustal scale models derived from Ocean Bottom Seismograph (OBS) data. It is suggested that the Vøring Basin can be divided in four compartments bounded by the Jan Mayen Fracture Zone/Lineament, a new lineament defined from this study, the Gleipne Lineament, the Surt Lineament and the Bivrost Lineament. The NW–SE trending Jan Mayen-, Gleipne- and Bivrost lineaments probably represent old zones of weakness controlling the onset of the early Eocene seafloor spreading, whereas the Surt- and New lineaments, rotated ca. 30° symmetrically from the azimuth of the Gleipne Lineament, may represent adjustment features related to the early Cretaceous/early Tertiary rifting. The longest landward extent of a lower crustal high-velocity body, assumed to represent intrusions related to the last phase of rifting, is found between the New Lineament and the Gleipne Lineament, where the body extends across the Helland Hansen Arch. Northeastwards in the Vøring Basin, the landward limit of the body steps gradually seawards, closely related to the interpreted lineaments. Northeast of the Gleipne Lineament, the body terminates close to the Fles Fault Complex, north of the Surt Lineament, it extends across the Nyk High, and northeast of the Bivrost Lineament the intrusions terminate around the Vøring Escarpment. Evidence for an interplay between active and passive rifting components is found on regional and local scales on the margin. The active component is evident through the decrease in magmatism with increased distance from the Icelandic plume, and the passive component is documented through the fact that all found crustal lineaments to a certain degree acted as barriers to magma emplacement. The increased thickness of the continental crust on the seaward side of the Vøring Escarpment, the upwarping of Moho and thinning of the lower crustal high-velocity layer in the western part of the Vøring Basin, as well as a strong shallowing of the Moho observed in parts of the area between the Jan Mayen Fracture Zone/Lineament and the New Lineament, can be explained by lithospheric delamination models. 相似文献
54.
Ken’ichi Nomoto Keiichi Maeda Nozomu Tominaga Takuya Ohkubo Jinsong Deng Paolo A. Mazzali 《Astrophysics and Space Science》2005,298(1-2):81-86
The nature of very energetic supernovae (hypernovae) is discussed. They are the explosive death of stars more massive than
~20–25M
⊙, probably linked to the enigmatic Gamma-Ray Bursts. The optical properties of hypernovae indicate that they are significantly
aspherical. Synthetic light curves and late-phase spectra of aspherical supernova/hypernova models are presented. These models
can account for the optical observations of SNe 1998bw and 2002ap. The abundance patterns of hypernovae are characterized
by large ratios (Zn, Co)/Fe and small ratios (Mn, Cr)/Fe, indicating a significant contribution of hypernovae to the early
Galactic chemical evolution. 相似文献
55.
Microplastics in the Southern Ocean 总被引:4,自引:0,他引:4
Atsuhiko Isobe Kaori Uchiyama-Matsumoto Keiichi Uchida Tadashi Tokai 《Marine pollution bulletin》2017,114(1):623-626
A field survey to collect microplastics with sizes < 5 mm was conducted in the Southern Ocean in 2016. We performed five net-tows and collected 44 pieces of plastic. Total particle counts of the entire water column, which is free of vertical mixing, were computed using the surface concentration (particle count per unit seawater volume) of microplastics, wind speed, and significant wave height during the observation period. Total particle counts at two stations near Antarctica were estimated to be in the order of 100,000 pieces km? 2. 相似文献
56.
Kazunori Watanabe Koji Ono Keiichi Sakaguchi Akira Takada Hideo Hoshizumi 《Journal of Volcanology and Geothermal Research》1999,89(1-4)
Fugen-dake, the main peak of Unzen Volcano, began a new eruption sequence on November 17, 1990. On May 20, 1991, a new lava dome appeared near the eastern edge of the Fugen-dake summit. Small-scale, 104–106 m3 in volume, Merapi-type block and ash flows were frequently generated from the growing lava dome during May–June, 1991. These pyroclastic flows were accompanied by co-ignimbrite ash plumes that deposited ash-fall deposits downwind of the volcano. Three examples of co-ignimbrite ash-fall deposits from Unzen pyroclastic flows are described. The volume of fall deposits was estimated to be about 30% by volume of the collapsed portions of the dome that formed pyroclastic flows. This proportion is smaller than that described for other larger co-ignimbrite ash-fall deposits from other volcanoes. Grain size distributions of the Unzen co-ignimbrite ash-fall deposits are bi-modal or tri-modal. Most ashes are finer than 4 phi and two modes were observed at around 4–7 phi and 9 phi. They are composed mainly of groundmass fragments. Fractions of another mode at around 2 phi are rich in crystals derived from dome lava. Some of the fine ash component fell as accretionary lapilli from the co-ignimbrite ash cloud indicating either moisture or electrostatic aggregation. We believe that the co-ignimbrite ash of Unzen block and ash flows were formed by the mechanical fracturing of the cooling lava blocks as they collapsed and moved down the slope. These ashes were entrained into the convective plumes generated off the tops of the moving flows. 相似文献
57.
Gaku Kimura Yasuyuki Nakamura Kazuya Shiraishi Gou Fujie Shuichi Kodaira Asuka Yamaguchi Rina Fukuchi Yoshitaka Hashimoto 《Island Arc》2021,30(1):e12402
The Nankai Trough, Japan, is a subduction zone characterized by the recurrence of disastrous earthquakes and tsunamis. Slow earthquakes and associated tremor also occur intermittently and locally in the Nankai Trough and the causal relationship between slow earthquakes and large earthquakes is important to understanding subduction zone dynamics. The Nankai Trough off Muroto, Shikoku Island, near the southeast margin of the rupture segment of the 1946 Nankai earthquake, is one of three regions where slow earthquakes and tremor cluster in the Nankai Trough. On the Philippine Sea plate, the rifting of the central domain of the Shikoku Basin was aborted at ~15 Ma and underthrust the Nankai forearc off Muroto. Here, the Tosa-Bae seamount and other high-relief features, which are northern extension of the Kinan Seamount chain, have collided with and indented the forearc wedge. In this study, we analyzed seismic reflection profiles around the deformation front of accretionary wedge and stratigraphically correlated them to drilling sites off Muroto. Our results show that the previously aborted horst-and-graben structures, which were formed around the spreading center of the Shikoku Basin at ~15 Ma, were rejuvenated locally at ~6 Ma and more regionally at ~3.3 Ma and have remained active since. The reactivated normal faulting has enhanced seafloor roughness and appears to affect the locations of slow earthquakes and tremors. Rejuvenated normal faulting is not limited to areas near the Nankai Trough, and extends more than 200 km into the Shikoku Basin to the south. This extension might be due to extensional forces applied to the Philippine Sea plate, which appear to be driven by slab-pull in the Ryukyu and Philippine trenches along the western margin of the Philippine Sea plate. 相似文献
58.
Takahiro Yamamoto Tatsunori Soya Shigeru Suto Kozo Uto Akira Takada Keiichi Sakaguchi Koji Ono 《Bulletin of Volcanology》1991,53(4):301-308
The submarine eruption of a new small knoll, which was named Teishi knoll, off eastern Izu Peninsula behind the Izu-Mariana arc occurred in the evening of 13 July 1989. This is the first historic eruption of the Higashi-Izu monogenetic volcano group. The eruption of 13 July followed an earthquake swarm near Ito city starting on 30 June. There were subsequent volcanic tremors on 11 and 12 July, and the formation of the Teishi knoll on the 100 m deep insular shelf 4 km northeast of Ito city. There were five submarine explosions, which were characterized by intermittent domelike bulges of water and black tephra-jets, which occurred within 10 min on 13 July. Ejecta of the eruption was small in volume and composed of highly crystalline basalt scoria, highly vesiculated pumice, and lithic material. Petrographical features suggest that the pumice was produced by vesiculation of reheated wet felsic tuff of an older formation. The Teishi knoll, before the eruption, was a circular dome, 450 m across and 25 m high, with steep sides and a flat summit. Considerations of submarine topographic change indicate the knoll was raised by sill-like intrusion of 106 m3 of magma beneath a 30 m thick sediment blanket. This shallow intrusion is assumed to have started on 11 July when volcanic tremors were observed for the first time, but there was no indications of violent interaction between wet host sediments and intruding magma. The submarine eruption of 13 July appears to have been Friggered by a major lowering of the magma-column. The basalt scoria, having crystal-contents of more than 60%, is assumed to be derived from the cooled plastic margin of the shallow intrusive body. However, glassy scoria, which would indicate the interaction between hot fluidal magma and external water, was not observed. A scenario for the 1989 submarine eruption is as follows. When rapid subsidence of the hot interior of the intrusive magma occurred, reduced pressure caused the implosion of cooled plastic magma, adjacent pressurized, hot host material, and wet sediment. The mixing of these materials triggered the vigorous vapor explosions. 相似文献
59.
60.
Seiichi Miura Shuichi Kodaira Ayako Nakanishi Tetsuro Tsuru Narumi Takahashi Naoshi Hirata Yoshiyuki Kaneda 《Tectonophysics》2003,363(1-2):79-102
The Japan Trench is a plate convergent zone where the Pacific Plate is subducting below the Japanese islands. Many earthquakes occur associated with plate convergence, and the hypocenter distribution is variable along the Japan Trench. In order to investigate the detailed structure in the southern Japan Trench and to understand the variation of seismicity around the Japan Trench, a wide-angle seismic survey was conducted in the southern Japan Trench fore-arc region in 1998. Ocean bottom seismometers (15) were deployed on two seismic lines: one parallel to the trench axis and one perpendicular. Velocity structures along two seismic lines were determined by velocity modeling of travel time ray-tracing method. Results from the experiment show that the island arc Moho is 18–20 km in depth and consists of four layers: Tertiary and Cretaceous sedimentary rocks, island arc upper and lower crust. The uppermost mantle of the island arc (mantle wedge) extends to 110 km landward of the trench axis. The P-wave velocity of the mantle wedge is laterally heterogeneous: 7.4 km/s at the tip of the mantle wedge and 7.9 km/s below the coastline. An interplate layer is constrained in the subducting oceanic crust. The thickness of the interplate layer is about 1 km for a velocity of 4 km/s. Interplate layer at the plate boundary may cause weak interplate coupling and low seismicity near the trench axis. Low P-wave velocity mantle wedge is also consistent with weak interplate coupling. Thick interplate layer and heterogeneous P-wave velocity of mantle wedge may be associated with the variation of seismic activity. 相似文献