首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   0篇
  国内免费   1篇
测绘学   2篇
大气科学   7篇
地球物理   9篇
地质学   19篇
海洋学   14篇
天文学   5篇
自然地理   3篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   3篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   5篇
  2012年   5篇
  2011年   9篇
  2010年   5篇
  2009年   4篇
  2008年   2篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2002年   2篇
  2001年   3篇
排序方式: 共有59条查询结果,搜索用时 31 毫秒
21.
A high resolution analysis of benthic foraminifera as well as of aeolian terrigenous proxies extracted from a 37 m-long marine core located off the Mauritanian margin spanning the last ~ 1.2 Ma, documents the possible link between major continental environmental changes with a shift in the isotopic signature of deep waters around 1.0–0.9 Ma, within the so-called Mid-Pleistocene Transition (MPT) time period. The increase in the oxygen isotopic composition of deep waters, as seen through the benthic foraminifera δ18O values, is consistent with the growth of larger ice sheets known to have occurred during this transition. Deep-water mass δ13C changes, also estimated from benthic foraminifera, show a strong depletion for the same time interval. This drastic change in δ13C values is concomitant with a worldwide 0.3‰ decrease observed in the major deep oceanic waters for the MPT time period. The phase relationship between aeolian terrigeneous signal increase and this δ13C decrease in our record, as well as in other paleorecords, supports the hypothesis of a global aridification amongst others processes to explain the deep-water masses isotopic signature changes during the MPT. In any case, the isotopic shifts imply major changes in the end-member δ18O and δ13C values of deep waters.  相似文献   
22.
The geometry of estuarine and/or incised‐valley basins and their protected character compared with open sea basins are favourable for the preservation of sedimentary successions. The Lower St. Lawrence Estuary Basin (LSLEB, eastern Canada) is characterized by a thick (>400 m in certain areas) Quaternary succession. High‐ and very high‐resolution seismic reflection data, multibeam bathymetry coverage completed by core and chronostratigraphic data as well as a 3‐D seismic stratigraphic model are used to document the geometrical relationships between the bedrock and the Quaternary units of the LSLEB. The bedrock geometry of LSLEB is characterized by two large troughs that are interpreted as resulting mainly from repeated (?) periods of glacial overdeepening of a pre‐Quaternary drainage system. However, other mechanisms with complex feedback effects such as differential glacio‐isostatic uplift, erosion, sedimentary supply, and subsidence may have contributed to the formation of bedrock troughs. The two large bedrock troughs are mostly filled by ~200 m thick Wisconsinan (Marine Isotopic Stages 2–4) and possibly older sediments. Overlying units recorded the retreat of the Laurentian Ice Sheet during the Late Wisconsinan (Marine Isotopic Stage 2) and estuarine conditions during the Holocene. The strong correlation existing between the bedrock topography and the thickness of the Quaternary succession is indicative of the effectiveness of the LSLEB as a sediment trap.  相似文献   
23.
The outbreak of COVID-19 raised numerous questions on the interactions between the occurrence of new infections, the environment, climate and health. The European Union requested the H2020 HERA project which aims at setting priorities in research on environment, climate and health, to identify relevant research needs regarding Covid-19. The emergence and spread of SARS-CoV-2 appears to be related to urbanization, habitat destruction, live animal trade, intensive livestock farming and global travel. The contribution of climate and air pollution requires additional studies. Importantly, the severity of COVID-19 depends on the interactions between the viral infection, ageing and chronic diseases such as metabolic, respiratory and cardiovascular diseases and obesity which are themselves influenced by environmental stressors. The mechanisms of these interactions deserve additional scrutiny. Both the pandemic and the social response to the disease have elicited an array of behavioural and societal changes that may remain long after the pandemic and that may have long term health effects including on mental health. Recovery plans are currently being discussed or implemented and the environmental and health impacts of those plans are not clearly foreseen. Clearly, COVID-19 will have a long-lasting impact on the environmental health field and will open new research perspectives and policy needs.  相似文献   
24.
Meteorological modelling in the planetary boundary layer (PBL) over Greater Paris is performed using the Weather Research and Forecast (WRF) numerical model. The simulated meteorological fields are evaluated by comparison with mean diurnal observational data or mean vertical profiles of temperature, wind speed, humidity and boundary-layer height from 6 to 27 May 2005. Different PBL schemes, which parametrize the atmospheric turbulence in the PBL using different turbulence closure schemes, may be used in the WRF model. The sensitivity of the results to four PBL schemes (two non-local closure schemes and two local closure schemes) is estimated. Uncertainties in the PBL schemes are compared to the influence of the urban canopy model (UCM) and the updated Coordination of Information on the Environment (CORINE) land-use data. Using the UCM and the CORINE land-use data produces more realistic modelled meteorological fields. The wind speed, which is overestimated in the simulations without the UCM, is improved below 1,000 m height. Furthermore, the modelled PBL heights during nighttime are strongly modified, with an increase that may be as high as 200 %. At night, the impact of changing the PBL scheme is lower than the impact of using the UCM and the CORINE land-use data.  相似文献   
25.
26.
Our understanding of monsoon circulation timing’s at the orbital scale is currently a matter of debate. Here, we compare previous and recently published results of Indian, East Asian, West African and East African monsoon variability. We note different timings between the East African, West African, Indian and East-Asian monsoon systems for the most recent 45 ka, where the age models are constrained by AMS dating. On this basis, we construct different orbital forcing “reference curves” and apply them to the 200 ka time period for the different monsoon systems. Our results indicate that the ‘global monsoon’ concept at the orbital scale is a misnomer. We find real regional differences in the timing of the monsoon response to orbital forcing and differences in the weight of precession and obliquity in the monsoon records. This work highlights the necessity of studies aimed at understanding the underlying physics of these regional response patterns. This is crucial to a better understanding of monsoon dynamics and improved climate model simulations and comparisons with proxy data.  相似文献   
27.
28.
Two recent gas-phase chemical kinetic mechanisms for tropospheric ozone formation, one based on the lumped-structure approach (CB05) and the other based on the lumped-molecule approach (RACM2), are compared for simulations of ozone over Europe. The host air quality model is POLAIR3D of the Polyphemus modeling platform. A one-month period (15 July to 15 August 2001) is simulated. Model performance is satisfactory with both mechanisms. Overall, the two mechanisms give similar results with a domain-averaged difference of 3 ppb and a mean fractional absolute difference of 5% (values averaged over the month for the daily 8-h average maximum ozone concentrations). This difference results from different treatments in the two mechanisms for both inorganic and organic chemistry. Differences in the treatment of the inorganic chemistry are due mainly to differences in the kinetics of two reactions: NO + O3 \(\longrightarrow\) NO2 + O2 and NO + HO2 \(\longrightarrow\) NO2 + OH. These differences lead to a domain-averaged difference in ozone concentration of 5%, with RACM2 kinetics being more conducive to ozone formation. Differences in the treatment of organic chemistry lead to a domain-averaged difference in ozone concentration of 3%, with CB05 chemistry being more conducive to ozone formation. This average difference results in part from compensating effects among various VOC classes and some significant differences are identified at specific locations (the coastline of northern Africa and eastern Europe: 9%) and for specific organic classes (aldehydes, biogenic alkenes and aromatics). Differences in the treatment of the organic chemistry result from various aspects. For some VOC classes, such as aldehydes and biogenic alkenes, the more detailed explicit treatments using more model species in RACM2 lead to either greater or lower reactivity depending on the assumptions made for the oxidation products. For other VOC species, such as aromatics, the assumptions made about the major chemical oxidation pathways (aromatic alcohol formation in CB05 vs. ring opening in RACM2) affect the ozone formation significantly. Reconciliation of different chemical kinetic mechanisms will require experimental data to reduce current uncertainties in the kinetic (e.g., NO oxidation) and mechanistic (e.g., aromatics oxidation) representations of major chemical pathways.  相似文献   
29.
Trapped-gas content in natural porous media, also called residual gas saturation (Sgr), corresponds to the imbibition end-point. To define the parameters controlling Sgr, two parameters were studied: the influence of rock characteristics (on 400 sandstone samples) and initial gas saturation (Sgi), on the basis of 60 experimental curves between Sgr and Sgi. Based on an extensive experimental database, this study establishes the dominant influence of microporosity on trapped gas saturation, and indirectly that of the contained clays. To cite this article: K. Suzanne, J. Billiotte, C. R. Geoscience 336 (2004).  相似文献   
30.
The Model of Multiphase Cloud Chemistry M2C2 has recently been extended to account for nucleation scavenging of aerosol particles in the cloud water chemical composition. This extended version has been applied to multiphase measurements available at the Puy de Dôme station for typical wintertime anthropogenic air masses. The simulated ion concentrations in cloud water are in reasonable agreement with the experimental data. The analysis of the sources of the chemical species in cloud water shows an important contribution from nucleation scavenging of particles which prevails for nitrate, sulphate and ammonium. Moreover, the simulation shows that iron, which comes only from the dissolution of aerosol particles in cloud water, has a significant contribution in the hydroxyl radical production. Finally, the simulated phase partitioning of chemical species in cloud are compared with measurements. Numerical results show an underestimation of interstitial particulate phase fraction with respect to the measurements, which could be due to an overestimation of activated mass by the model. However, the simulated number scavenging efficiency of particles agrees well with the measured value of 40% of total number of aerosol particles activated in cloud droplets. Concerning the origin of chemical species in cloud water, the model reproduces quite well the contribution of gas and aerosol scavenging estimated from measurements. In addition, the simulation provides the contribution of in-cloud chemical reactivity to cloud water concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号