首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   4篇
大气科学   3篇
地球物理   10篇
地质学   15篇
海洋学   3篇
天文学   15篇
自然地理   8篇
  2024年   1篇
  2018年   2篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   5篇
  2010年   4篇
  2009年   2篇
  2008年   5篇
  2007年   4篇
  2006年   4篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2001年   4篇
  1999年   1篇
  1996年   3篇
  1982年   1篇
排序方式: 共有54条查询结果,搜索用时 281 毫秒
21.
In this paper, we will present the stratigraphic evolution, internal facies architecture and geomorphology of the Middle Pleistocene Emme delta, controlled by rapid high‐amplitude lake‐level change. The Emme delta was deposited on the northern margin of glacial Lake Weser, located in north‐west Germany. Rates of lake‐level rise were probably >50 mm year?1 and rates of lake‐level fall 30–50 m within a few days or weeks, due to the opening of lake outlets. We use digital elevation models, sedimentology and shear wave seismics to improve earlier reconstructions and investigate the influence of rapid base‐level change on delta development. Shear wave seismic data resolve architectural elements in the range of metres and bridge the common gap between outcrop and conventional compression wave seismic data. The radial delta complex is about 2 km long, 1.8 km wide and up to 70 m thick, overlying a concave, up to 13° steep dipping ramp surface. It consists of vertically and laterally stacked delta lobes, caused by lobe switching during base‐level change. During the lake‐level rise, vertically stacked (Gilbert‐type) delta systems formed. The decrease in thickness and lateral extent indicates a rapid upslope shift of depocentres. A high rate and magnitude of lake‐level fall (50 m) promoted the development of a single incised valley and the deposition of forced regressive coarse‐grained delta lobes in front of the valley. The incised valley was filled during decreasing rates of lake‐level fall and low base‐level, because the alluvial gradient was larger than the emergent lake profile. Attached sand‐rich forced regressive aprons formed during lower magnitudes of lake‐level falls in the range of 30–35 m. Valley incision occurred, but was limited to the uppermost portion of the delta, controlled by the steep slope. The incised valley related to the final lake drainage is associated with long‐wavelength (60–90 m) bedforms at the downslope end, attributed to the formation of standing waves as a result of a hydraulic jump. Estimated palaeoflow depth during standing wave formation was ~9–14 m and flow velocity was 10–12 m s?1. Because subsidence, waves or tides did not play a major role, the Emme delta can be used as an analogue‐based predictive stratigraphical and sedimentological model for steep glacigenic deltas controlled by rapid base‐level change and can help to understand better the facies distribution and three‐dimensional geometry of these depositional systems.  相似文献   
22.
23.
24.
The Helmstedt‐Staßfurt salt wall is 70 km long, 6–8 km wide and one of the most important diapiric structures in northern Germany, based on the economically significant lignite‐bearing rim synclines. The analysed Schöningen rim syncline, located on the southwestern side of the Helmstedt‐Staßfurt structure, is 8 km long and 3 km wide. The basin‐fill is up to 366 m thick and characterized by 13 major lignite seams with thicknesses between 0.1 and 30 m. The key objectives of this article were to expand on the classical cross‐section based rim syncline analysis by the use of 3D models and basin simulations. Cross‐sections perpendicular to the basin axis indicate that the basin‐fill has a pronounced lenticular shape. This shape varies from more symmetric in the NW to clearly asymmetric in the SE. Isopach maps imply a two‐fold depocentre evolution. The depocentre migrated over time towards the salt wall and also showed some distinct shifts parallel to the salt wall. The basin modelling part of the study was carried out with the software PetroMod®, which focused on the burial history of the rim syncline. Modelling results also show the progressive migration of the rim syncline depocentre towards the salt wall. The present‐day asymmetry of the basin‐fill was already developed in the early phases of rim syncline evolution. The extracted geohistory curve shows initial rapid subsidence between 57 and 50 Ma and more moderate subsidence from 50 to 34 Ma. This pattern is interpreted to reflect salt evacuation from the source layer into the salt wall. The initial salt‐withdrawal rate was rapid, but later decreased probably due to depletion of the source layer.  相似文献   
25.
The effects of the chloroacetanilide herbicide metazachlor have been investigated in outdoor artificial mesocosms. Decreasing phytoplankton densities were caused by the application, however, the communities recovered after 30 to 35 days. Periphyton growth was found to be affected not only by the herbicide application but by the presence of species with different ability to grow on artificial substrates. Zooplankton diversity was small due to low density of ingestible algae species. Oxygen saturation was found to be correlated with the dosage levels of the herbicide in the second half of the study.  相似文献   
26.
27.
Amino acid biogeo- and stereochemistry in coastal Chilean sediments   总被引:1,自引:0,他引:1  
The spatial distribution of total hydrolysable amino acids (THAA) and amino acid enantiomers (d- and l-forms) was investigated in sediments underlying two contrasting Chilean upwelling regions: at ∼23 °S off Antofagasta and at ∼36 °S off Concepción. The contribution of amino acids to total organic carbon (%TAAC: 7-14%) and total nitrogen (%TAAN: 23-38%) in surface sediments decreased with increasing water depth (from 126 to 1350 m) indicating that organic matter becomes increasingly decomposed in surface sediments at greater water depth. Changes in the ratio between the protein amino acid aspartate and its non-protein degradation product β-alanine confirmed this observation. Furthermore, estimates of THAA mineralization showed that sedimentary amino acid reactivity decreased with both increasing water depth as well as progressive degradation status of the organic matter that was incorporated into the sediment. Reactivity of organic matter in the sediment was also assessed using the Degradation Index (DI) developed by [Dauwe, B., Middelburg, J.J., 1998. Amino acids and hexosamines as indicators of organic matter degradation state in North Sea sediments. Limnol. Oceanogr.43, pp. 782-798.]. Off Concepción, DI was successfully applied to examine the degradation status of sedimentary organic matter at different water depths. However, unexpected results were obtained at the Antofagasta stations as DI increased with sediment depth, suggesting more degraded organic matter at the surface than deeper in the cores. The contribution of peptidoglycan amino acids to THAA was estimated from the concentrations of d-aspartate, d-glutamic acid, d-serine, and d-alanine. Peptidoglycan amino acids accounted for >18% of THAA in all investigated samples. In surface sediments peptidoglycan amino acids accounted for a progressively larger fraction of THAA at increasing water depths (up to >26%). Further, the contribution of peptidoglycan amino acids to THAA increased with increased sediment depth and age (up to 288-year-old) reaching up to 59%. Independent estimates based on d-amino acid concentrations in selected laboratory strains, bacterial counts and the sedimentary concentrations of d-amino acids indicate that a large fraction of the measured d-amino acids (>47 to >97%) originated from cell wall residues rather than from enumerated cells.  相似文献   
28.
29.
During the late Saalian Drenthe glaciation ice-damming of the Upper Weser Valley led to the formation of glacial Lake Weser. The lake drained catastrophically into the Münsterland Embayment as the western ice dam failed, releasing up to 110 km3 of water with a calculated peak discharge of 2.5 × 105 m3/s to 1.3 × 106 m3/s. Geographic information systems (GIS) and high-resolution digital elevation models (DEM) were used to map streamlined landforms and channel systems in front of lake overspills. Geological maps, 2450 boreholes and the DEM were integrated into the 3D modeling program GOCAD to reconstruct the distribution of flood-related deposits, palaeotopographic surfaces and the internal facies architecture of streamlined hills. The drainage pathways are characterized by the occurrence of deep plunge pools, channels, streamlined hills and 4 km long and 12 m deep V-shaped megaflutes. Plunge pools are deeply incised into Mesozoic basement rocks and occur in front of three major overspill channels. The plunge pools are up to 780 m long, 400 m wide and 35 m deep. Approximately 1–10.5 km downslope of the overspill channels fan shaped arrays of streamlined hills are developed, each covering an area of 60–130 km2, indicating rapid flow expansion. The hills commonly have quadrilateral to elongated shapes and formed under submerged to partly submerged flow conditions, when the outburst flood entered a shallow lake in the Münsterland Embayment. Hills are up to 4300 m long, 1200 m wide, 11 m high and have characteristic average aspect ratios of 1:3.3. They are separated by shallow, anabranching channels in the outer zones and up to 30 m deep channels in the central zones. Hills partly display V-shaped chevron-like bedforms that have apices facing upslope, are 1.6–2.5 km long, 3–10 m high, 0.8–1.2 m from limb to limb, with limb separation angels of 20–35°. These bedforms are interpreted as mixed erosional depositional features. It is hypothesized that the post-Saalian landscape evolution of the Münsterland Embayment has considerably been influenced by catastrophic floods of glacial Lake Weser, creating large and deep valleys, which subsequently became the new site of river systems. The outburst floods probably followed the east-west-trending Saalian Rhine-Meuse river system eventually flowing into the North Sea, the Strait of Dover and the Bay of Biscay. It is speculated that the Hondsrug ice stream may have been enhanced or even triggered by the formation and outburst of glacial lakes in the study area.  相似文献   
30.
Abstract— The metal‐rich chondrites Hammadah al Hamra (HH) 237 and Queen Alexandra Range (QUE) 94411, paired with QUE 94627, contain relatively rare (<1 vol%) calcium‐aluminum‐rich inclusions (CAIs) and Al‐diopside‐rich chondrules. Forty CAIs and CAI fragments and seven Al‐diopside‐rich chondrules were identified in HH 237 and QUE 94411/94627. The CAIs, ~50–400 μm in apparent diameter, include (a) 22 (56%) pyroxene‐spinel ± melilite (+forsterite rim), (b) 11 (28%) forsterite‐bearing, pyroxene‐spinel ± melilite ± anorthite (+forsterite rim) (c) 2 (5%) grossite‐rich (+spinel‐melilite‐pyroxene rim), (d) 2 (5%) hibonite‐melilite (+spinel‐pyroxene ± forsterite rim), (e) 1 (2%) hibonite‐bearing, spinel‐perovskite (+melilite‐pyroxene rim), (f) 1 (2%) spinel‐melilite‐pyroxene‐anorthite, and (g) 1 (2%) amoeboid olivine aggregate. Each type of CAI is known to exist in other chondrite groups, but the high abundance of pyroxene‐spinel ± melilite CAIs with igneous textures and surrounded by a forsterite rim are unique features of HH 237 and QUE 94411/94627. Additionally, oxygen isotopes consistently show relatively heavy compositions with Δ17O ranging from ?6%0 to ?10%0 (1σ = 1.3%0) for all analyzed CAI minerals (grossite, hibonite, melilite, pyroxene, spinel). This suggests that the CAIs formed in a reservoir isotopically distinct from the reservoir(s) where “normal”, 16O‐rich (Δ17O < ?20%0) CAIs in most other chondritic meteorites formed. The Al‐diopside‐rich chondrules, which have previously been observed in CH chondrites and the unique carbonaceous chondrite Adelaide, contain Al‐diopside grains enclosing oriented inclusions of forsterite, and interstitial anorthitic mesostasis and Al‐rich, Ca‐poor pyroxene, occasionally enclosing spinel and forsterite. These chondrules are mineralogically similar to the Al‐rich barred‐olivine chondrules in HH 237 and QUE 94411/94627, but have lower Cr concentrations than the latter, indicating that they may have formed during the same chondrule‐forming event, but at slightly different ambient nebular temperatures. Aluminum‐diopside grains from two Al‐diopside‐rich chondrules have O‐isotopic compositions (Δ17O ? ?7 ± 1.1 %0) similar to CAI minerals, suggesting that they formed from an isotopically similar reservoir. The oxygen‐isotopic composition of one Ca, Al‐poor cryptocrystalline chondrule in QUE 94411/94627 was analyzed and found to have Δ17O ? ?3 ± 1.4%0. The characteristics of the CAIs in HH 237 and QUE 94411/94627 are inconsistent with an impact origin of these metal‐rich meteorites. Instead they suggest that the components in CB chondrites are pristine products of large‐scale, high‐temperature processes in the solar nebula and should be considered bona fide chondrites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号