首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28232篇
  免费   833篇
  国内免费   672篇
测绘学   776篇
大气科学   2359篇
地球物理   5729篇
地质学   10085篇
海洋学   2493篇
天文学   6163篇
综合类   172篇
自然地理   1960篇
  2022年   184篇
  2021年   294篇
  2020年   307篇
  2019年   337篇
  2018年   638篇
  2017年   617篇
  2016年   715篇
  2015年   595篇
  2014年   765篇
  2013年   1392篇
  2012年   934篇
  2011年   1242篇
  2010年   1057篇
  2009年   1402篇
  2008年   1231篇
  2007年   1172篇
  2006年   1106篇
  2005年   940篇
  2004年   905篇
  2003年   867篇
  2002年   786篇
  2001年   724篇
  2000年   665篇
  1999年   595篇
  1998年   589篇
  1997年   589篇
  1996年   454篇
  1995年   432篇
  1994年   391篇
  1993年   337篇
  1992年   317篇
  1991年   279篇
  1990年   310篇
  1989年   282篇
  1988年   235篇
  1987年   312篇
  1986年   263篇
  1985年   349篇
  1984年   385篇
  1983年   375篇
  1982年   335篇
  1981年   311篇
  1980年   312篇
  1979年   284篇
  1978年   311篇
  1977年   264篇
  1976年   268篇
  1975年   276篇
  1974年   235篇
  1973年   239篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
A general trend of decreasing soil loss rates with increasing vegetation cover fraction is widely accepted. Field observations and experimental work, however, show that the form of the cover‐erosion function can vary considerably, in particular for low cover conditions that prevail on arid and semiarid hillslopes. In this paper the structured spatial distribution of the vegetation cover and associated soil attributes is proposed as one of the possible causes of variation in cover–erosion relationships, in particular in dryland environments where patchy vegetation covers are common. A simulation approach was used to test the hypothesis that hillslope discharge and soil loss could be affected by variation in the spatial correlation structure of coupled vegetation cover and soil patterns alone. The Limburg Soil Erosion Model (LISEM) was parameterized and verified for a small catchment with discontinuous vegetation cover at Rambla Honda, SE Spain. Using the same parameter sets LISEM was subsequently used to simulate water and sediment fluxes on 1 ha hypothetical hillslopes with simulated spatial distributions of vegetation and soil parameters. Storms of constant rainfall intensity in the range of 30–70 mm h?1 and 10–30 min duration were applied. To quantify the effect of the spatial correlation structure of the vegetation and soil patterns, predicted discharge and soil loss rates from hillslopes with spatially structured distributions of vegetation and soil parameters were compared with those from hillslopes with spatially uniform distributions. The results showed that the spatial organization of bare and vegetated surfaces alone can have a substantial impact on predicted storm discharge and erosion. In general, water and sediment yields from hillslopes with spatially structured distributions of vegetation and soil parameters were greater than from identical hillslopes with spatially uniform distributions. Within a storm the effect of spatially structured vegetation and soil patterns was observed to be highly dynamic, and to depend on rainfall intensity and slope gradient. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
992.
The dynamics of vegetation‐driven spatial heterogeneity (VDSH) and its function in structuring runoff and sediment fluxes have received increased attention from both geomorphological and ecological perspectives, particularly in arid regions with sparse vegetation cover. This paper reviews the recent findings in this area obtained from field evidence and numerical simulation experiments, and outlines their implications for soil erosion assessment. VDSH is often observed at two scales, individual plant clumps and stands of clumps. At the patch scale, the local outcomes of vegetated patches on soil erodibility and hydraulic soil properties are well established. They involve greater water storage capacity as well as increased organic carbon and nutrient inputs. These effects operate together with an enhanced capacity for the interception of water and windborne resources, and an increased biological activity that accelerates breakdown of plant litter and nutrient turnover rates. This suite of relationships, which often involve positive feedback mechanisms, creates vegetated patches that are increasingly different from nearby bare ground areas. By this way a mosaic builds up with bare ground and vegetated patches coupled together, respectively, as sources and sinks of water, sediments and nutrients. At the stand scale within‐storm temporal variability of rainfall intensity controls reinfiltration of overland flow and its decay with slope length. At moderate rainfall intensity, this factor interacts with the spatial structure of VDSH and the mechanism of overland flow generation. Reinfiltration is greater in small‐grained VDSH and topsoil saturation excess overland flow. Available information shows that VDSH structures of sources and sinks of water and sediments evolve dynamically with hillslope fluxes and tune their spatial configurations to them. Rainfall simulation experiments in large plots show that coarsening VDSH leads to significantly greater erosion rates even under heavy rainfall intensity because of the flow concentration and its velocity increase. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
993.
The model for the 2000 dike intrusion event between Kozushima and Miyakejima volcano, Japan, was reinvestigated. After the sudden earthquake swarm in Miyakejima volcano, a dike intrusion of large volume was detected by the nationwide GPS network (Geonet). The displacements detected with GPS stations over an area with a radius of about 200 km shows a distribution that is consistent with the dike source being located near Miyakejima volcano.The dike was intruded northwestwards between Miyakejima and the neighboring Kozushima volcano. We searched for the parameters in the models that reproduce the regional displacements due to dike intrusion between Miyakejima and Kozushiima islands. We tested three models, (1) the model with a single dike, (2) the model with a dike and a point dislocation source which represents a creep dislocation source and (3) the model with a dike and a deflation source which represents a magma reservoir. Though all three models can match the horizontal displacements near the source area, model 1 fails to reproduce the regional displacements in the central part of Japan. Both models 2 and 3 can reproduce the regional displacement for horizontal components. Model 3 produces slightly better results than model 2 for vertical components. The balance in the volume budget for models 2 and 3 is also consistent with the observations. These results show that we cannot distinguish between the two models using only GPS observation. As there is no direct evidence for such a large creep or ductile source (corresponds to M7 or more) as proposed in model 2 and the active seismic region migrated back and forth within the linear swarm region, the model with a dike and a deep magma source is preferable. For the deflation point source, we obtained a deflation volume of 1.5 km3 at the depth of 20 km below the dike. An additional ~0.95 km3 of volume loss through caldera collapse and edifice deflation took place at Miyakejima. We conclude that the magma that intruded the dike came in part from below Miyakejima and in part from below the sea floor between Miyakejima and Kozushima, perhaps from reservoirs at the Moho.Editorial responsibility: S Nakada, T Druitt  相似文献   
994.
995.
A first study from the subtropical western Atlantic, using 231Pa/230Th ratios as a kinematic proxy for deep water circulation, provided compelling evidence for a strong link between climate and the rate of Meridional Overturning Circulation (MOC) over the last deglaciation. However, these results warrant confirmation from additional locations and water depths because the interpretation of the sedimentary 231Pa/230Th ratio in terms of circulation vigor can be biased by variations in particle flux and composition. We have measured 231Pa/230Th in a core from the Iberian margin, in the Northeastern Atlantic basin, and have compared these new results to the data from the western Atlantic basin. We find that the reduction in the circulation during H1 and YD and the subsequent increases first recognized in the sediment deposited on Bermuda Rise are also evident in the eastern basin, in a totally different sedimentary regime, confirming that sedimentary 231Pa/230Th ratios record basin-wide changes in deep water circulation. However, some differences between the eastern and western records are also recognized, providing preliminary evidence to differentiate between renewal rates in the two North Atlantic basins and between shallower and deeper overturning. Our results suggest the possible existence of two sources of Glacial North Atlantic Intermediate Deep Water (GNAIW), one in the south Labrador Sea and another west of Rockall Plateau. Both sources contributed to the meridional overturning but the two had different sensitivity to meltwater from the Laurentide and the Fennoscandian ice sheets during the deglaciation. These results indicate that additional information on the geometry and strength of the ventilation of the deep Atlantic can be obtained by contrasting the evolution of sediment 231Pa/230Th in different sections of the Atlantic Ocean.  相似文献   
996.
In the assessment of air quality, regional distribution and dispersion with distance are important, together with the variations of pollutants in time. On this occasion, the point cumulative semi-variogram (PCSV) method is used in order to find simply regional distribution of pollutants of Erzurum urban centre. This method is based simply on the summation of square differences in air pollutant concentrations between different sites. Monthly regional variation maps of Erzurum are constructed by finding radius of influence (for SO2, from 1000 m to 3500 m and, for TSP, 1000–2000 m) and PCSV scattering diagram data at different levels by using monthly average sulphur dioxide (SO2) and total suspended particulate (TSP) matter concentrations in 2001–2002 winter season. Consequently, the air pollution distribution of Erzurum is assessed.  相似文献   
997.
Concentrated plasticity (CP) models are frequently used in static and dynamic building analysis and have been implemented in available commercial software. This investigation deals with three different CP‐models, a simplified macroelement model (SEM) for a complete building story, a frame element with elasto‐plastic interaction hinges (PH), and a frame element with fiber hinges (FB). The objectives of this work are to evaluate the quality of the earthquake responses predicted by these models and to identify important aspects of their implementation and limitations for their use in dynamic analysis. The three elements are tested in a single‐story asymmetric plan building and in a three‐story steel building. Results show that base shear and global response values are usually computed with better accuracy than interstory deformations and local responses. Besides, the main limitation of elasto‐plastic CP models is to control the displacement offsets that result from perfect elasto‐plastic behavior. On the other hand, calibration of the SEM‐model shows that global responses in steel structures may be computed within 20% error in the mean at a computational cost two orders of magnitude smaller than that of the other CP elements considered. However, the three element models considered lead to increasing levels of accuracy in the dynamic response and their use depends on the refinement of the analysis performed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
998.
This paper presents pseudo‐dynamic test results on the in‐plane seismic behaviour of infilled frames. Thirteen single‐storey, single‐bay, half‐size‐scale, reinforced concrete‐frame specimens, most of which infilled with non‐structural masonry made of perforated bricks and cement mortar are tested. The infills are in contact with frames, without any connector; openings are not covered. The frames are different in their strength and details, reinforcement grade, and aspect ratio. Seismic input is the 1976 Tolmezzo (Friuli, Italy) ground acceleration, to which specimens are subjected two times: virgin and damaged by the previous test. The global seismic response of initially virgin infilled specimens considerably differs from that of bare specimens. This follows a dramatic change of properties: compared to a bare frame, the initial stiffness increases by one order of magnitude, and the peak strength more than doubles. The peak drift lessens; however, the displacement ductility demand does not. The energy demand is greater. Nevertheless, the influence of infill decreases as damage proceeds. Displacement time histories of damaged specimens are quite similar. At the local level, infill causes asymmetry and concentration of the frame deformation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
999.
A new computational framework is developed for the design and retrofit of building structures by considering aseismic design as a complex adaptive process. For the initial phase of the development within this framework, genetic algorithms are employed for the discrete optimization of passively damped structural systems. The passive elements may include metallic plate dampers, viscous fluid dampers and viscoelastic solid dampers. The primary objective is to determine robust designs, including both the non‐linearity of the structural system and the uncertainty of the seismic environment. Within the present paper, this computational design approach is applied to a series of model problems, involving sizing and placement of passive dampers for energy dissipation. In order to facilitate our investigations and provide a baseline for further study, we introduce several simplifications for these initial examples. In particular, we employ deterministic lumped parameter structural models, memoryless fitness function definitions and hypothetical seismic environments. Despite these restrictions, some interesting results are obtained from the simulations and we are able to gain an understanding of the potential for the proposed evolutionary aseismic design methodology. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
1000.
Whalebacks are convex landforms created by the smoothing of bedrock by glacial processes. Their formation is attributed to glacial abrasion either by bodies of subglacial sediment sliding over bedrock or by individual clasts contained within ice. This paper reports field measurements of sediment depth around two whaleback landforms in order to investigate the relationship between glacigenic deposits and whaleback formation. The study site, at Lago Tranquilo in Chilean Patagonia, is situated within the Last Glacial Maximum (LGM) ice limits. The two whalebacks are separated by intervening depressions in which sediment depths are generally 0.2 to 0.3 m. Two facies occur on and around the whalebacks. These facies are: (1) angular gravel found only on the surface of the whalebacks, interpreted as bedrock fracturing in response to unloading of the rock following pressure release after ice recession, and (2) sandy boulder‐gravel in the sediment‐filled depressions between the two whalebacks, interpreted as an ice‐marginal deposit, with a mixture of sediment types including basal glacial and glaciofluvial sediment. Since the whalebacks have heavily abraded and striated surfaces but are surrounded by only a patchy and discontinuous layer of sediment, the implication is that surface abrasion of the whalebacks was achieved primarily by clasts entrained in basal ice, not by subglacial till sliding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号