首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1665篇
  免费   50篇
  国内免费   27篇
测绘学   58篇
大气科学   125篇
地球物理   347篇
地质学   548篇
海洋学   117篇
天文学   395篇
综合类   8篇
自然地理   144篇
  2022年   23篇
  2021年   22篇
  2020年   26篇
  2019年   24篇
  2018年   52篇
  2017年   54篇
  2016年   38篇
  2015年   40篇
  2014年   48篇
  2013年   84篇
  2012年   46篇
  2011年   68篇
  2010年   72篇
  2009年   76篇
  2008年   71篇
  2007年   66篇
  2006年   63篇
  2005年   41篇
  2004年   53篇
  2003年   41篇
  2002年   60篇
  2001年   29篇
  2000年   36篇
  1999年   22篇
  1998年   28篇
  1997年   26篇
  1996年   17篇
  1995年   21篇
  1994年   14篇
  1993年   18篇
  1992年   23篇
  1991年   14篇
  1990年   14篇
  1989年   10篇
  1987年   21篇
  1986年   17篇
  1985年   24篇
  1984年   34篇
  1983年   30篇
  1982年   34篇
  1981年   25篇
  1980年   27篇
  1979年   25篇
  1978年   16篇
  1977年   18篇
  1976年   23篇
  1975年   13篇
  1974年   19篇
  1973年   18篇
  1971年   10篇
排序方式: 共有1742条查询结果,搜索用时 15 毫秒
61.
J. Veverka  J. Goguen  S. Yang  J. Elliot 《Icarus》1979,37(1):249-255
The problem of comparing laboratory spectra of sulfur-containing binary mixtures with the spectrum of Io is discussed. For the satellite, the observable is the geometric albedo as a function of wavelength, whereas in the laboratory one often measures some other type of albedo. In a previous paper we demonstrated that for pure sulfur the multiplicative factor which converts the laboratory albedos to geometric albedos can be strongly wavelength dependent. The present paper demonstrates that this is also true for binary sulfur-containing mixtures. Furthermore, there is no universal conversion factor applicable to all binary mixtures, nor can the factor be interpolated for a particular mixture from the conversion factors of the two end members. The conversion factor is a function not only of the specific composition of a binary mixture, but of the relative particle size distributions of the two components, and must be measured specifically for each individual sample if a quantitative comparison between a laboratory sample and Io's surface is desired.  相似文献   
62.
An earlier paper gave solutions for the mean time rates of change of orbital elements of satellite atoms in an exosphere influenced by solar radiation pressure. Each element was assumet to beahve independently. Here the instantaneous rates of change for three elements (e, ω, and θ = ω + Ω) are integrated simultaneously for the case of the inclination i = 0. The results (a) confirm the validity of using mean rates when the orbits are tightly bound to the planet and (b) serve as examples to be reproduced by the complicated numerical solutions required for arbitrary inclination. Strongly bound hydrogen atoms perturbed in Earth orbit by radiation pressure do not seem a likely cause of the geotail extending in the anti-Sun direction. Instead, radiation pressure wil cause those particles' orbits to form a broad fan-shaped tail and to deteriorate into the Earth's atmosphere. Whether loosely bound H atoms are plentiful enough to create the geotail depends on their source function versusr; that question is beyond the scope of this paper.  相似文献   
63.
Three-dimensional electron density distributions in the solar corona are reconstructed for 100 Carrington rotations (CR 2054?–?2153) during 2007/03?–?2014/08 using the spherically symmetric method from polarized white-light observations with the inner coronagraph (COR1) onboard the twin Solar Terrestrial Relations Observatory (STEREO). These three-dimensional electron density distributions are validated by comparison with similar density models derived using other methods such as tomography and a magnetohydrodynamics (MHD) model as well as using data from the Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO)-C2. Uncertainties in the estimated total mass of the global corona are analyzed based on differences between the density distributions for COR1-A and -B. Long-term variations of coronal activity in terms of the global and hemispheric average electron densities (equivalent to the total coronal mass) reveal a hemispheric asymmetry during the rising phase of Solar Cycle 24, with the northern hemisphere leading the southern hemisphere by a phase shift of 7?–?9 months. Using 14 CR (\(\approx13\)-month) running averages, the amplitudes of the variation in average electron density between Cycle 24 maximum and Cycle 23/24 minimum (called the modulation factors) are found to be in the range of 1.6?–?4.3. These modulation factors are latitudinally dependent, being largest in polar regions and smallest in the equatorial region. These modulation factors also show a hemispheric asymmetry: they are somewhat larger in the southern hemisphere. The wavelet analysis shows that the short-term quasi-periodic oscillations during the rising and maximum phases of Cycle 24 have a dominant period of 7?–?8 months. In addition, it is found that the radial distribution of the mean electron density for streamers at Cycle 24 maximum is only slightly larger (by \(\approx30\%\)) than at cycle minimum.  相似文献   
64.
A matrix method is outlined for the reduction of astronomical X-ray spectral data which includes the effects of detector resolution and fluorescent escape phenomena. The differences between this method and the ‘backward reduction’ or multiple grid methods presently employed are discussed.  相似文献   
65.
High-resolution images from the Cassini Imaging Science Subsystem (ISS) show parallel sets of grooves on Epimetheus and Pandora. Grooves have previously been observed on other satellites and asteroids, including Phobos, Gaspra, Ida, Eros, and minor occurrences on Phoebe. Sets of parallel grooves are so far observed only on satellites known or likely to be subject to significant tidal stresses, such as forced librations. Grooves on asteroids and on satellites not subject to significant forced librations occur in more globally disorganized patterns that may reflect impacts, varying internal structures, or even thermal stresses. The patterns and individual morphologies of grooves on the tidally-affected satellites suggest fracturing in weak materials due to tidal stresses and forced librations.  相似文献   
66.
Since one does not know the photometric functions of various parts of Io, one cannot convert the observed geometric albedo of the satellite to a parameter more directly measurable in the laboratory. One must therefore convert laboratory reflectances to geometric albedos before quantitative comparisons between Io's surface and a laboratory sample are made. This procedure involves determining the wavelength dependence of the sample's photometric function. For substances such as sulfur, whose reflectance varies strongly with wavelength, it is incorrect to assume that the photometric function, and hence the ratio (laboratory reflectance/geometric albedo) is independent of wavelength. To illustrate this point, measurements of the color dependence of this ratio for sulfur are presented for the specific case in which the measured laboratory reflectance is the sample's normal reflectance. In general, unless the laboratory reflectance is precisely the geometric albedo, a wavelength-dependent correction factor must be determined before the laboratory sample can be compared quantitatively with Io's surface.  相似文献   
67.
J. Veverka  K. Cook  J. Goguen 《Icarus》1978,33(3):466-482
A statistical study of all crater-related wind streaks visible on Mariner 9 A-camera frames between latitudes 0 and 30°N has been completed. Of the 2325 streaks identified 1914 (82%) are light tone streaks, 189 (8%) are dark tone, and the remaining 222 (10%) are of mixed tone. Nine parameters characterizing each streak and its associated crater were measured and intercorrelated. Because of the large number of light streaks in our sample fir findings for this type of streak are most significant statistically: light tone streaks occur preferentially in Pc terrain (heavily cratered plains); they are preferentially associated with fresh craters; the surface density of light streaks is not a strong function of elevation; a significant latitude effect does emerge—the density of light tone streaks reaches a maximum between 10 and 15°N, and drops off appreciably both toward the equator and toward higher latitudes; the mean angular width of light streaks is about 25°—long light streaks are significantly narrower than short ones; about 50% of streaks have streak length/crater diameter ratios of ?4; light streak directions conform closely to the wind regime expected at the season of global dust storms (southern summer). Generally speaking, the results for dark and mixed tone streaks in the northern equatorial zone are similar, with the following possible exceptions: dark streaks may show a slight preference to form at higher elecations; dark streaks may be slightly wider on average than light or mixed tone streaks; mixed tone streaks do not share the preference for sharp craters exhibited by light and dark streaks; in general, the directions of dark streaks do not conform to the general circulation pattern expected at the season of global dust storms as well as do those of the light streaks.  相似文献   
68.
Abstract– We have experimentally produced nanophase sulfide compounds and magnetite embedded in Si‐rich amorphous materials by flash‐cooling of a gas stream. Similar assemblages are ubiquitous, and often dominant components of samples of impact‐processed silica aerogel tiles and submicron grains from comet 81P/Wild 2 were retrieved by NASA’s Stardust mission. Although the texture and compositions of nanosulfide compounds have been reproduced experimentally, the mechanisms of formation of these minerals and their relationship with the surrounding amorphous materials have not been established. In this study, we present evidence that both of these materials may not only be produced through cooling of a superheated liquid but they may have also been formed simultaneously by flash‐cooling and subsequent deposition of a gas dominated by Fe‐S‐SiO‐O2. In a dust generator at the Goddard Space Flight Center, samples are produced by direct gas‐phase condensation from gaseous precursors followed by deposition, which effectively isolates the effects of gas‐phase reactions from the effects of melting and condensation. High‐resolution transmission electron microscopy images and energy‐dispersive spectroscopy analysis show that these experiments replicate key features of materials from type B and type C Stardust tracks, including textures, distribution of inclusions, nanophase size, and compositional diversity. We argue that gas‐phase reactions may have played a significant role in the capture environment for nanophase materials. Our results are consistent with a potential progenitor assemblage of micron and submicron‐sized sulfides and submicron silica‐bearing phases, which are commonly observed in chondritic interplanetary dust particles and in the matrices of the most pristine chondritic meteorites.  相似文献   
69.
70.
Diffuse 511-keV line emission, from the annihilation of cold positrons, has been observed in the direction of the Galactic Centre for more than 30 yr. The latest high-resolution maps of this emission produced by the SPI instrument on INTEGRAL suggest at least one component of the emission is spatially coincident with the distribution of ∼70 luminous, low-mass X-ray binaries detected in the soft gamma-ray band. The X-ray band, however, is generally a more sensitive probe of X-ray binary populations. Recent X-ray surveys of the Galactic Centre have discovered a much larger population (>4000) of faint, hard X-ray point sources. We investigate the possibility that the positrons observed in the direction of the Galactic Centre originate in pair-dominated jets generated by this population of fainter accretion-powered X-ray binaries. We also consider briefly whether such sources could account for unexplained diffuse emission associated with the Galactic Centre in the microwave (the Wilkinson Microwave Anisotropy Probe 'haze') and at other wavelengths. Finally, we point out several unresolved problems in associating Galactic Centre 511-keV emission with the brightest X-ray binaries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号