首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8297篇
  免费   289篇
  国内免费   96篇
测绘学   200篇
大气科学   580篇
地球物理   1928篇
地质学   2975篇
海洋学   755篇
天文学   1232篇
综合类   19篇
自然地理   993篇
  2021年   89篇
  2020年   113篇
  2019年   115篇
  2018年   167篇
  2017年   163篇
  2016年   228篇
  2015年   195篇
  2014年   196篇
  2013年   475篇
  2012年   248篇
  2011年   309篇
  2010年   283篇
  2009年   340篇
  2008年   321篇
  2007年   281篇
  2006年   315篇
  2005年   242篇
  2004年   292篇
  2003年   263篇
  2002年   265篇
  2001年   174篇
  2000年   170篇
  1999年   147篇
  1998年   141篇
  1997年   104篇
  1996年   115篇
  1995年   115篇
  1994年   128篇
  1993年   114篇
  1992年   114篇
  1991年   109篇
  1990年   101篇
  1989年   89篇
  1988年   87篇
  1987年   123篇
  1986年   103篇
  1985年   163篇
  1984年   187篇
  1983年   145篇
  1982年   127篇
  1981年   132篇
  1980年   108篇
  1979年   125篇
  1978年   118篇
  1977年   103篇
  1976年   97篇
  1975年   92篇
  1974年   67篇
  1973年   84篇
  1972年   49篇
排序方式: 共有8682条查询结果,搜索用时 31 毫秒
991.
992.
993.
The process basis of existing soil‐erosion models is shown to be ill‐founded. The existing literature builds directly or indirectly on Bennett's (1974) paper, which provided a blueprint for integrated catchment‐scale erosion modelling. Whereas Bennett recognized the inherent assumptions of the approach suggested, subsequent readings of the paper have led to a less critical approach. Most notably, the assumption that sediment movement could be approximated by a continuity equation that related to transport in suspension has produced a series of submodels that assume that all movement occurs in suspension. For commonly occurring conditions on hillslopes, this case is demonstrably untrue both on theoretical grounds and from empirical observations. Elsewhere in the catchment system, it is only partially true, and the extent to which the assumption is reasonable varies both spatially and temporally. A second ground‐breaking paper – that of Foster and Meyer (1972) – was responsible for subsequent uncritical application of a first‐order approximation to deposition based on steady‐state analysis and again a weak empirical basis. We describe in this paper an alternative model (Mahleran – Model for Assessing Hillslope‐Landscape Erosion, Runoff And Nutrients) based upon particle‐travel distance that overcomes existing limitations by incorporating parameterizations of the different detachment and transport mechanisms that occur in water erosion in hillslopes and small catchments. In the second paper in the series, we consider the sensitivity and general behaviour of Mahleran , and test it in relation to data from a large rainfall‐simulation experiment. The third paper of the sequence evaluates the model using data from plots of different sizes in monitored rainfall events. From this evaluation, we consider the scaling characteristics of the current form of Mahleran and suggest that integrated modelling, laboratory and field approaches are required in order to advance the state of the art in soil‐erosion modelling. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
994.
Surface and core sediments collected from six mariculture farms in the Pearl River Delta (PRD) were analyzed to evaluate contamination levels of polychlorinated biphenyls (PCBs). The ∑PCBs (37 congeners) concentrations ranged from 5.10 to 11.0 ng g(-1) (mean 7.96 ng g(-1)) in surface and 3.19 to 22.1 ng g(-1) (mean 7.75 ng g(-1)) in core sediments, respectively. The concentrations were significantly higher than that measured in the sediments of their corresponding reference sites, whereby the average enrichment percentages were 62.0% and 42.7% in surface and core sediments, respectively. Significant correlations (R2=0.77, p<0.05) of PCB homologue group proportions between fish feeds and surface mariculture sediments suggested that fish feed input was probably the main source for the enrichment of PCBs. Due to the fact that PCBs could be transferred along food chains, PCB contamination in fish feeds and mariculture sediments should not be overlooked.  相似文献   
995.
Starting from the unit-impulse response matrix of the unbounded medium, a discrete-time formulation permitting the recursive evaluation of the interaction forces and a continuous-time formulation yielding property matrices corresponding to a model with a finite number of degrees of freedom are discussed. This is achieved using the balancing approximation method which is easily automated, guarantees stability and leads to highly accurate results. © 1998 John Wiley & Sons Ltd.  相似文献   
996.
In order to determine the effect of geometry on the ground response of 2-dimensional (2-D) basins filled with soils that can develop nonlinear response, we use three basin models with width/depth ratios 3, 6 and 10. The three basins are subjected to a suite of rock site records with various magnitudes and source distances. We compute response spectral amplification ratios at four locations on the surface of the 2-D basins, and determine the average variation of the amplification ratios with respect to excitation spectra, for peak ground acceleration (PGA) and 3 spectral periods of 0.2, 0.5, 1 s. Similarly, we compute the average response spectral amplification ratios for two 1-dimensional (1-D) nonlinear models, one having the soil profile at the basin centre and the other having a soil profile at half the depth of the basin. From the relationship between the average amplification ratios and excitation spectra, we determine the cross-over point in terms of excitation spectral values that separate the amplification range from the deamplification range. Our results show that the cross-over point varies significantly from one location to another on the ground surface and from one basin to another, in a range of 0.3–1.1g for PGA. The effects of basin geometry are very strong at weak and moderate excitation, but decrease with increasing excitation spectra in a significant portion around the basin centre. Our results provide some justification for using 1-D models for 2-D basins with a width/depth ratio ?6 if the soil site is subjected to strong ground shaking.  相似文献   
997.
Water is a limiting factor for life in the McMurdo Dry Valleys (MDV), Antarctica. The active layer (seasonally thawed soil overlying permafrost) accommodates dynamic hydrological and biological processes for 10–16 weeks per year. Wetted margins (visually wetted areas with high moisture content) adjacent to lakes and streams are potential locations of great importance in the MDV because of the regular presence of liquid water, compared with the rest of the landscape where liquid water is rare. At 11 plots (four adjacent to lakes, seven adjacent to streams), soil particle size distribution, soil electrical conductivity, soil water content and isotopic signature, width of the wetted margin, and active layer thaw depth were characterised to determine how these gradients influence physicochemical properties that determine microbial habitat and biogeochemical cycling. Sediments were generally coarse‐grained in wetted margins adjacent to both lakes and streams. Wetted margins ranged from 1·04 to 11·01 m in average length and were found to be longer at lakeside sites than streamside. Average thaw depths ranged from 0·12 to 0·85 m, and were found to be deepest under lake margins. Lake margins also had much higher soil electrical conductivity, steeper topographic gradients, but more gradual soil moisture gradients than stream margins. Patterns of soil water δ18O and δD distribution indicate capillary action and evaporation from wetted margins; margin pore waters generally demonstrated isotopic enrichment with distance from the shore, indicating evaporation of soil water. Lake margin pore waters were significantly more negative in DXS (DXS = δD‐8δ18O) than streamside pore waters, indicating a longer history of evaporation there. Differences between lake and stream margins can be explained by the more consistent availability of water to lake margins than stream margins. Differences in margin characteristics between lakes and streams have important consequences for the microbial habitat of these margins and their functional role in biogeochemical cycling at these terrestrial–aquatic interfaces. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
998.
Tsunamis have occurred in Canada due to earthquakes, landslides, and a large chemical explosion. The Pacific coast is at greatest risk from tsunamis because of the high incidence of earthquakes and landslides in that region. The most destructive historical tsunamis, however, have been in Atlantic Canada – one in 1917 in Halifax Harbour, which was triggered by a catastrophic explosion on a munitions ship, and another in 1929 in Newfoundland, caused by an earthquake-triggered landslide at the edge of the Grand Banks. The tsunami risk along Canada's Arctic coast and along the shores of the Great Lakes is low in comparison to that of the Pacific and Atlantic coasts. Public awareness of tsunami hazard and risk in Canada is low because destructive tsunamis are rare events.  相似文献   
999.
1000.
The adequate documentation and interpretation of regional‐scale stratigraphic surfaces is paramount to establish correlations between continental and shallow marine strata. However, this is often challenged by the amalgamated nature of low‐accommodation settings and control of backwater hydraulics on fluvio‐deltaic stratigraphy. Exhumed examples of full‐transect depositional profiles across river‐to‐delta systems are key to improve our understanding about interacting controlling factors and resultant stratigraphy. This study utilizes the ~400 km transect of the Cenomanian Mesa Rica Sandstone (Dakota Group, USA), which allows mapping of down‐dip changes in facies, thickness distribution, fluvial architecture and spatial extent of stratigraphic surfaces. The two sandstone units of the Mesa Rica Sandstone represent contemporaneous fluvio‐deltaic deposition in the Tucumcari sub‐basin (Western Interior Basin) during two regressive phases. Multivalley deposits pass down‐dip into single‐story channel sandstones and eventually into contemporaneous distributary channels and delta‐front strata. Down‐dip changes reflect accommodation decrease towards the paleoshoreline at the Tucumcari basin rim, and subsequent expansion into the basin. Additionally, multi‐storey channel deposits bound by erosional composite scours incise into underlying deltaic deposits. These represent incised‐valley fill deposits, based on their regional occurrence, estimated channel tops below the surrounding topographic surface and coeval downstepping delta‐front geometries. This opposes criteria offered to differentiate incised valleys from flood‐induced backwater scours. As the incised valleys evidence relative sea‐level fall and flood‐induced backwater scours do not, the interpretation of incised valleys impacts sequence stratigraphic interpretations. The erosional composite surface below fluvial strata in the continental realm represents a sequence boundary/regional composite scour (RCS). The RCS’ diachronous nature demonstrates that its down‐dip equivalent disperses into several surfaces in the marine part of the depositional system, which challenges the idea of a single, correlatable surface. Formation of a regional composite scour in the fluvial realm throughout a relative sea‐level cycle highlights that erosion and deposition occur virtually contemporaneously at any point along the depositional profile. This contradicts stratigraphic models that interpret low‐accommodation settings to dominantly promote bypass, especially during forced regressions. Source‐to‐sink analyses should account for this in order to adequately resolve timing and volume of sediment storage in the system throughout a complete relative sea‐level cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号