首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   7篇
  国内免费   4篇
测绘学   2篇
大气科学   22篇
地球物理   24篇
地质学   69篇
海洋学   7篇
天文学   44篇
自然地理   2篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2016年   6篇
  2015年   3篇
  2014年   5篇
  2013年   11篇
  2012年   10篇
  2011年   8篇
  2010年   7篇
  2009年   14篇
  2008年   6篇
  2007年   7篇
  2006年   13篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1998年   2篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1970年   4篇
  1969年   1篇
  1965年   1篇
  1964年   1篇
  1962年   1篇
排序方式: 共有170条查询结果,搜索用时 31 毫秒
121.
122.
123.
124.
阿尔金断裂带年代学和阿尔金山隆升   总被引:36,自引:2,他引:34       下载免费PDF全文
对阿尔金山断裂带内变形的中生代剪切带中眼球状片麻岩、糜棱岩化花岗片麻岩和新生代剪切带中强变形绿片岩系列样品中同构造新生云母矿物的40Ar-39Ar法定年,获得了164.3~178.4Ma和26.3~36.4Ma两组年龄。结合阿尔金走滑断裂水平错距的研究,认为164.3~178.4Ma的年龄代表阿尔金走滑断裂带的起始活动时间(早侏罗世末—中侏罗世),尔后分别在距今100~85Ma,40~25Ma和10~8Ma发生多次脉冲式走滑活动。新生代沉积物研究表明上干柴沟组和下干柴沟组砂岩骨架矿物成份含量明显不同,随时间变化,石英含量减少,岩屑组份和不稳定矿物含量增加,分选性逐渐变差。这表明阿尔金山在渐新世(下干柴沟组时期)开始发生明显的隆升。地震和柴达木—塔里木盆地沉积速率资料显示在晚中新世山体也发生了一次强烈的隆升。七个泉组(上新世末—早更新世初)和下伏沉积物(上新世中期)之间的角度不整合反映了最后一次强烈隆升事件发生在晚上新世。多数隆升事件和阿尔金断裂带新生代脉冲式活动的同位素年龄完全一致,表明阿尔金山的隆升和断裂带的活动具有密切的成因联系。  相似文献   
125.
Starting from the Becklin-Neugebauer Object in Orion as a prototype, a class of compact infrared sources thought to be young massive stars surrounded by optically thick dust shells is identified by means of a wide range of their observable features. A catalogue of 34 such objects is compiled, providing comprehensive information such as infrared and radio spectra, maser sources, and outflow phenomena.  相似文献   
126.
Coordinated Ocean-ice Reference Experiments (COREs) are presented as a tool to explore the behaviour of global ocean-ice models under forcing from a common atmospheric dataset. We highlight issues arising when designing coupled global ocean and sea ice experiments, such as difficulties formulating a consistent forcing methodology and experimental protocol. Particular focus is given to the hydrological forcing, the details of which are key to realizing simulations with stable meridional overturning circulations.The atmospheric forcing from [Large, W., Yeager, S., 2004. Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. NCAR Technical Note: NCAR/TN-460+STR. CGD Division of the National Center for Atmospheric Research] was developed for coupled-ocean and sea ice models. We found it to be suitable for our purposes, even though its evaluation originally focussed more on the ocean than on the sea-ice. Simulations with this atmospheric forcing are presented from seven global ocean-ice models using the CORE-I design (repeating annual cycle of atmospheric forcing for 500 years). These simulations test the hypothesis that global ocean-ice models run under the same atmospheric state produce qualitatively similar simulations. The validity of this hypothesis is shown to depend on the chosen diagnostic. The CORE simulations provide feedback to the fidelity of the atmospheric forcing and model configuration, with identification of biases promoting avenues for forcing dataset and/or model development.  相似文献   
127.
In this paper the mathematical tools for future calculations of the diffuse radiation field inside a homogeneous spherically symmetric dust nebula are made available. The solution of the equation of radiative transfer is represented as an expansion after LEGENDRE polynomials. Making use of the operator calculus a system of ordinary differential equations is derived the solution of which yields the coefficients of this expansion. The method developped here is more general as well as more rigorous than previous work in this field.  相似文献   
128.
The Laser Astrometric Test of Relativity (LATOR) is an experiment designed to test the metric nature of gravitation—a fundamental postulate of the Einstein’s general theory of relativity. The key element of LATOR is a geometric redundancy provided by the long-baseline optical interferometry and interplanetary laser ranging. By using a combination of independent time-series of gravitational deflection of light in the immediate proximity to the Sun, along with measurements of the Shapiro time delay on interplanetary scales (to a precision respectively better than 0.1 picoradians and 1 cm), LATOR will significantly improve our knowledge of relativistic gravity and cosmology. The primary mission objective is i) to measure the key post-Newtonian Eddington parameter γ with accuracy of a part in 109. $\frac{1}{2}(1-\gamma)$ is a direct measure for presence of a new interaction in gravitational theory, and, in its search, LATOR goes a factor 30,000 beyond the present best result, Cassini’s 2003 test. Other mission objectives include: ii) first measurement of gravity’s non-linear effects on light to ~0.01% accuracy; including both the traditional Eddington β parameter and also the spatial metric’s 2nd order potential contribution (never measured before); iii) direct measurement of the solar quadrupole moment J 2 (currently unavailable) to accuracy of a part in 200 of its expected size of ??10???7; iv) direct measurement of the “frame-dragging” effect on light due to the Sun’s rotational gravitomagnetic field, to 0.1% accuracy. LATOR’s primary measurement pushes to unprecedented accuracy the search for cosmologically relevant scalar-tensor theories of gravity by looking for a remnant scalar field in today’s solar system. We discuss the science objectives of the mission, its technology, mission and optical designs, as well as expected performance of this experiment. LATOR will lead to very robust advances in the tests of fundamental physics: this mission could discover a violation or extension of general relativity and/or reveal the presence of an additional long range interaction in the physical law. There are no analogs to LATOR; it is unique and is a natural culmination of solar system gravity experiments.  相似文献   
129.
130.
Instrumental temperature recording in the Greater Alpine Region (GAR) began in the year 1760. Prior to the 1850–1870 period, after which screens of different types protected the instruments, thermometers were insufficiently sheltered from direct sunlight so were normally placed on north-facing walls or windows. It is likely that temperatures recorded in the summer half of the year were biased warm and those in the winter half biased cold, with the summer effect dominating. Because the changeover to screens often occurred at similar times, often coincident with the formation of National Meteorological Services (NMSs) in the GAR, it has been difficult to determine the scale of the problem, as all neighbour sites were likely to be similarly affected. This paper uses simultaneous measurements taken for eight recent years at the old and modern site at Kremsmünster, Austria to assess the issue. The temperature differences between the two locations (screened and unscreened) have caused a change in the diurnal cycle, which depends on the time of year. Starting from this specific empirical evidence from the only still existing and active early instrumental measuring site in the region, we developed three correction models for orientations NW through N to NE. Using the orientation angle of the buildings derived from metadata in the station histories of the other early instrumental sites in the region (sites across the GAR in the range from NE to NW) different adjustments to the diurnal cycle are developed for each location. The effect on the 32 sites across the GAR varies due to different formulae being used by NMSs to calculate monthly means from the two or more observations made at each site each day. These formulae also vary with time, so considerable amounts of additional metadata have had to be collected to apply the adjustments across the whole network. Overall, the results indicate that summer (April to September) average temperatures are cooled by about 0.4°C before 1850, with winters (October to March) staying much the same. The effects on monthly temperature averages are largest in June (a cooling from 0.21° to 0.93°C, depending on location) to a slight warming (up to 0.3°C) at some sites in February. In addition to revising the temperature evolution during the past centuries, the results have important implications for the calibration of proxy climatic data in the region (such as tree ring indices and documentary data such as grape harvest dates). A difference series across the 32 sites in the GAR indicates that summers since 1760 have warmed by about 1°C less than winters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号