首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   748篇
  免费   22篇
  国内免费   3篇
测绘学   29篇
大气科学   38篇
地球物理   165篇
地质学   287篇
海洋学   32篇
天文学   147篇
综合类   4篇
自然地理   71篇
  2019年   14篇
  2018年   24篇
  2017年   10篇
  2016年   22篇
  2015年   10篇
  2014年   24篇
  2013年   34篇
  2012年   30篇
  2011年   28篇
  2010年   29篇
  2009年   43篇
  2008年   29篇
  2007年   29篇
  2006年   36篇
  2005年   24篇
  2004年   23篇
  2003年   21篇
  2002年   29篇
  2001年   11篇
  2000年   15篇
  1999年   22篇
  1998年   16篇
  1997年   9篇
  1996年   15篇
  1995年   12篇
  1994年   11篇
  1993年   8篇
  1992年   5篇
  1991年   7篇
  1990年   9篇
  1989年   15篇
  1988年   7篇
  1987年   8篇
  1985年   12篇
  1984年   6篇
  1983年   7篇
  1982年   4篇
  1981年   9篇
  1980年   5篇
  1979年   7篇
  1978年   9篇
  1977年   4篇
  1976年   6篇
  1975年   5篇
  1974年   5篇
  1973年   8篇
  1971年   5篇
  1955年   5篇
  1950年   4篇
  1949年   5篇
排序方式: 共有773条查询结果,搜索用时 437 毫秒
761.
We provide an up-to-date compilation of Euler rotations that model the evolution of the Central and Northern Atlantic Ocean (Table 1). The data basis forms seafloor spreading magnetic anomalies of the Atlantic. We checked the published rotations and selected those that form a consistent model. The increments of the Euler rotations going back in time from magnetic anomaly to magnetic anomaly can be illustrated by chains of points on “drift lines” that are paths of motions from continent to continent. Along these paths, the continents bordering the Atlantic Ocean can be moved back to their Mesozoic position within Pangea. Other figures exhibit the early rifting of the North Atlantic, the drift of Iberia, and the evolution of the Greenland-Ellesmere region. The points on the drift lines do not correspond directly to the lines of magnetic anomalies or their “picks” displayed today symmetrically in the Atlantic Ocean. To acquire correspondence, symmetric “flow lines” are constructed analogous to the spreading procedure. But points on the flow lines constructed by half of the increments partially also deviate from the expected symmetric position and in this way quantify displacements or jumps of the axis of rifting or spreading. Most of the selected rotations are from the excellent analyses of previous work. Essential deviations from published rotations are the M 0 rotations of Eurasia and of the Porcupine unit with respect to North America (EUR-NAM and POR-NAM). They lead to a better coincidence between the back-rotated M 0 magnetic anomalies in the Bay of Biscay on the one side and a change of the first transform motions between Greenland and Svalbard on the other side. Through this explanation, an overlap in Pangea SW of Svalbard is avoided and transform motions instead of strong extension are predicted. Some additional data are needed to complete the model: the earliest part of the path of Iberia to North America (IBA-NAM) up to M 4 is calculated assuming that Iberia moved parallel to the African plate, though with slower spreading rates. The evolution of the Central and North Atlantic Ocean system is described in short. This model of the Central and North Atlantic was produced with the primary intention of clearing and fixing the positions of Africa, Iberia, and Eurasia as a framework for an improved reconstruction of the Western Tethys evolution.  相似文献   
762.
Re-evaluation of the river history, palaeosurface levels and exhumation history in northern Switzerland for the last 10 million years reveals that distinct morphotectonic events about 4.2 and 2.8 million years ago (Ma) caused major reorganisation of river networks and morphosculpture. As a result of the earlier formation of the Swiss Jura, potential relief energy in the piggy-back North Alpine Foreland Basin (NAFB) of northern central Switzerland south of the Jura fold belt was built up after 11–10 Ma. It was suddenly released by river capture at about 4.2 Ma when the Aare-Danube was captured by a tributary of the Rhône-Doubs river system which rooted southeast of the Black forest. This event triggered rapid denudation of weakly consolidated Molasse sediments, in the order of about 1 km, as constrained by apatite fission track data from drillholes in the NAFB. Likely mechanisms of river capture are (a) headward erosion of Rhône-Doubs tributaries, (b) uplift and rapidly increasing erosion of the Swiss Alps after about 5.3 Ma, and (c) gravel aggradation at the eastern termination of the Jura fold belt in the course of eastward and northward tilt of the piggy-back NAFB. A morphotectonic event between 4.2 and 2.5 Ma, probably at about 2.8 Ma, caused a phase of planation, accompanied by local gravel aggradation and temporary storage of Alpine debris. Between 2.8 and 2.5 Ma, the Aare-Rhône river system is cannibalised by the modern Rhine River, the latter later connecting with the Alpine Rhine River.  相似文献   
763.
764.
Abstract– We present NanoSIMS four‐isotope S analyses of 24 comet Wild 2 dust impact residues in craters on aluminum foil C2037N returned by NASA’s Stardust mission. Except for one sample, all impact residues have normal S isotopic compositions within 2σ uncertainties of at least two S isotope ratios. This implies that most S‐rich Wild 2 dust impactors formed in the solar system. Instrumental isotope fractionation due to sample topography is the main contribution to our analytical uncertainty. One impact crater residue shows small anomalies of δ33S = ?57 ± 17‰, and δ34S = ?41 ± 17‰ (1σ uncertainties). Although this could be simply a statistical outlier or the fingerprint of a chemical isotope fractionation it is also possible that the observed anomaly results from the mixture of a cometary FeS particle with a small (150 nm diam.) presolar FeS supernova grain. This would translate into a presolar sulfide abundance of approximately 200 ppm.  相似文献   
765.
The SPOT image analysis in Muzaffarabad Azad Kashmir,northwest Himalayas,Pakistan reveals that the Kashmir earthquake 2005 triggered a number of coseismic mass movements along the hanging wall block of the Muzaffarabad Fault.The Neelidandi and Langarpura rock falls have been identified as two major reactivated mass movements with an estimated volume of 3.1 × 106m3and 5.76 × 106m3,respectively.The Neelidandi and Langarpura mass movements were initiated during earthquake in the direction of northwest-southeast extension and northeastsouthwest directed thrusting,respectively.The Neelidandi rock fall occurred in sheared cherty dolomites and limestones of the Cambrian Muzaffarabad Formation,whereas the Langarpura rock fall occurred in alternating clays,shales,claystones,siltstones and sandstones of the Miocene Murree Formation.These rock units along the fault are highly fractured and jointed.The geotechnical maps and geological longitudinal profiles show the relationship between the geometrical characteristics and mechanism of these mass movements.Their characteristics were analyzed according to the role of topographic,seismic,geological and tectonic factors.The steep topography,sheared rocks,lithology,coseismic uplift and strong ground shaking of the hanging wall block along Muzaffarabad Fault facilitated the gravity collapse of these mass movements.  相似文献   
766.
767.
The purpose of this research is to investigate what factors influence the management of International Business Air Travel (IBAT). The researchers interviewed 34 business travellers, travel organisers and executives involved in IBAT from ten organisations in differing industries, in Australia. It was found that there are a multitude of factors influencing IBAT management, including professionalism and job satisfaction of travellers and the achievement of organisational goals such as carrying out successful international ventures or operating effectively in international markets. From the findings a strategic model was developed called the Threshold of Tolerance Model—which illustrates the potential point where both organisational goals are most likely to be met and where IBAT is most likely to be well managed for both travellers and organisations.  相似文献   
768.
The sensitive high-resolution ion microprobe (SHRIMP) developed at the Australian National University (ANU) was the first of the high-resolution ion microprobes. The impact of this instrument on geochronological research over the last twenty years has been immense. This is particularly so for lunar geochronology where it has opened up avenues of research that were not possible using conventional TIMS techniques. The great advantage of SHRIMP is that it provides a means for determining precise U–Pb isotopic ratios on selected micron-size areas on polished grains of zircon and other U-bearing minerals. One of the first projects undertaken on the newly invented SHRIMP I was an investigation of U–Pb ages of lunar zircon. Using SHRIMP, multiple analyses could be made on areas of individual zircons to test the stability of U–Pb systems in shocked grains. Also, by analysing grains “in situ”, textural relationships between the analysed zircon and the components of the sample breccia could be used in the interpretation of the SHRIMP data. As a result of this research it was realised that most lunar zircons have ages up to 500 Ma older than the Imbrium and Serenitatis impacts at ca. 3.9 Ga, demonstrating that the zircons have not been affected by the these impact events although heating and shock effects have profoundly disturbed other dating systems. This has opened the way for research into the early lunar magmatic and bombardment record. For example, recent SHRIMP results have revealed profound differences in the ages of zircons from breccias from the Apollo 14 and Apollo 17 sample sites, raising new questions about the evolution of lunar magmatism. Also, multiple SHRIMP analyses on complex lunar zircons have shown that these grains can record U–Pb disturbance by later impact events. SHRIMP U–Pb age determinations on phosphates in lunar meteorites has identified lunar events not recognised in samples from the Apollo program. SHRIMP-based research on lunar materials is ongoing and, in combination with other chemical and structural evidence, continues to stimulate new ideas on the early evolution of the Moon.  相似文献   
769.
Although multicomponent reactive transport modeling is gaining wider application in various geoscience fields, it continues to present significant mathematical and computational challenges. There is a need to solve and compare the solutions to complex benchmark problems, using a variety of codes, because such intercomparisons can reveal promising numerical solution approaches and increase confidence in the application of reactive transport codes. In this contribution, the results and performance of five current reactive transport codes are compared for the 1D and 2D subproblems of the so-called easy test case of the MoMaS benchmark (Carrayrou et al., Comput Geosci, 2009, this issue). This benchmark presents a simple fictitious reactive transport problem that highlights the main numerical difficulties encountered in real reactive transport problems. As a group, the codes include iterative and noniterative operator splitting and global implicit solution approaches. The 1D easy advective and 1D easy diffusive scenarios were solved using all codes, and, in general, there was a good agreement, with solution discrepancies limited to regions with rapid concentration changes. Computational demands were typically consistent with what was expected for the various solution approaches. The differences between solutions given by the three codes solving the 2D problem are more important. The very high computing effort required by the 2D problem illustrates the importance of parallel computations. The most important outcome of the benchmark exercise is that all codes are able to generate comparable results for problems of significant complexity and computational difficulty.  相似文献   
770.
Coastal sector impacts from sea level rise (SLR) are a key component of the projected economic damages of climate change, a major input to decision-making and design of climate policy. Moreover, the ultimate global costs to coastal resources will depend strongly on adaptation, society’s response to cope with the local impacts. This paper presents a new open-source optimization model to assess global coastal impacts from SLR from the perspective of economic efficiency. The Coastal Impact and Adaptation Model (CIAM) determines the optimal strategy for adaptation at the local level, evaluating over 12,000 coastal segments, as described in the DIVA database (Vafeidis et al. 2006), based on their socioeconomic characteristics and the potential impacts of relative sea level rise and uncertain sea level extremes. A deterministic application of CIAM demonstrates the model’s ability to assess local impacts and direct costs, choose the least-cost adaptation, and estimate global net damages for several climate scenarios that account for both global and local components of SLR (Kopp et al. 2014). CIAM finds that there is large potential for coastal adaptation to reduce the expected impacts of SLR compared to the alternative of no adaptation, lowering global net present costs through 2100 by a factor of seven to less than $1.7 trillion, although this does not include initial transition costs to overcome an under-adapted current state. In addition to producing aggregate estimates, CIAM results can also be interpreted at the local level, where retreat (e.g., relocate inland) is often a more cost-effective adaptation strategy than protect (e.g., construct physical defenses).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号