首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   748篇
  免费   22篇
  国内免费   3篇
测绘学   29篇
大气科学   38篇
地球物理   165篇
地质学   287篇
海洋学   32篇
天文学   147篇
综合类   4篇
自然地理   71篇
  2019年   14篇
  2018年   24篇
  2017年   10篇
  2016年   22篇
  2015年   10篇
  2014年   24篇
  2013年   34篇
  2012年   30篇
  2011年   28篇
  2010年   29篇
  2009年   43篇
  2008年   29篇
  2007年   29篇
  2006年   36篇
  2005年   24篇
  2004年   23篇
  2003年   21篇
  2002年   29篇
  2001年   11篇
  2000年   15篇
  1999年   22篇
  1998年   16篇
  1997年   9篇
  1996年   15篇
  1995年   12篇
  1994年   11篇
  1993年   8篇
  1992年   5篇
  1991年   7篇
  1990年   9篇
  1989年   15篇
  1988年   7篇
  1987年   8篇
  1985年   12篇
  1984年   6篇
  1983年   7篇
  1982年   4篇
  1981年   9篇
  1980年   5篇
  1979年   7篇
  1978年   9篇
  1977年   4篇
  1976年   6篇
  1975年   5篇
  1974年   5篇
  1973年   8篇
  1971年   5篇
  1955年   5篇
  1950年   4篇
  1949年   5篇
排序方式: 共有773条查询结果,搜索用时 15 毫秒
71.
This paper describes a new 2D model for the photospheric evolution of the magnetic carpet. It is the first in a series of papers working towards constructing a realistic 3D non-potential model for the interaction of small-scale solar magnetic fields. In the model, the basic evolution of the magnetic elements is governed by a supergranular flow profile. In addition, magnetic elements may evolve through the processes of emergence, cancellation, coalescence and fragmentation. Model parameters for the emergence of bipoles are based upon the results of observational studies. Using this model, several simulations are considered, where the range of flux with which bipoles may emerge is varied. In all cases the model quickly reaches a steady state where the rates of emergence and cancellation balance. Analysis of the resulting magnetic field shows that we reproduce observed quantities such as the flux distribution, mean field, cancellation rates, photospheric recycle time and a magnetic network. As expected, the simulation matches observations more closely when a larger, and consequently more realistic, range of emerging flux values is allowed (4×1016 – 1019 Mx). The model best reproduces the current observed properties of the magnetic carpet when we take the minimum absolute flux for emerging bipoles to be 4×1016 Mx. In future, this 2D model will be used as an evolving photospheric boundary condition for 3D non-potential modeling.  相似文献   
72.
Several of the icy satellites of Saturn show the spectroscopic signature of the asymmetric stretching mode of C-O in carbon dioxide (CO2) at or near the nominal solid-phase laboratory wavelength of 4.2675 μm (2343.3 cm−1), discovered with the Visible-Infrared Mapping Spectrometer (VIMS) on the Cassini spacecraft. We report here on an analysis of the variation in wavelength and width of the CO2 absorption band in the spectra of Phoebe, Iapetus, Hyperion, and Dione. Comparisons are made to laboratory spectra of pure CO2, CO2 clathrates, ternary mixtures of CO2 with other volatiles, implanted and adsorbed CO2 in non-volatile materials, and ab initio theoretical calculations of CO2 * nH2O. At the wavelength resolution of VIMS, the CO2 on Phoebe is indistinguishable from pure CO2 ice (each molecule’s nearby neighbors are also CO2) or type II clathrate of CO2 in H2O. In contrast, the CO2 band on Iapetus, Hyperion, and Dione is shifted to shorter wavelengths (typically ∼4.255 μm (∼2350.2 cm−1)) and broadened. These wavelengths are characteristic of complexes of CO2 with different near-neighbor molecules that are encountered in other volatile mixtures such as with H2O and CH3OH, and non-volatile host materials like silicates, some clays, and zeolites. We suggest that Phoebe’s CO2 is native to the body as part of the initial inventory of condensates and now exposed on the surface, while CO2 on the other three satellites results at least in part from particle or UV irradiation of native H2O plus a source of C, implantation or accretion from external sources, or redistribution of native CO2 from the interior.The analysis presented here depends on an accurate VIMS wavelength scale. In preparation for this work, the baseline wavelength calibration for the Cassini VIMS was found to be distorted around 4.3 μm, apparently as a consequence of telluric CO2 gas absorption in the pre-launch calibration. The effect can be reproduced by convolving a sequence of model detector response profiles with a deep atmospheric CO2 absorption profile, producing distorted detector profile shapes and shifted central positions. In a laboratory blackbody spectrum used for radiance calibration, close examination of the CO2 absorption profile shows a similar deviation from that expected from a model. These modeled effects appear to be sufficient to explain the distortion in the existing wavelength calibration now in use. A modification to the wavelength calibration for 13 adjacent bands is provided. The affected channels span about 0.2 μm centered on 4.28 μm. The maximum wavelength change is about 10 nm toward longer wavelength. This adjustment has implications for interpretation of some of the spectral features observed in the affected wavelength interval, such as from CO2, as discussed in this paper.  相似文献   
73.
We present results from a suite of N-body simulations that follow the formation and accretion history of the terrestrial planets using a new parallel treecode that we have developed. We initially place 2000 equal size planetesimals between 0.5 and 4.0 AU and the collisional growth is followed until the completion of planetary accretion (>100 Myr). A total of 64 simulations were carried out to explore sensitivity to the key parameters and initial conditions. All the important effect of gas in laminar disks are taken into account: the aerodynamic gas drag, the disk-planet interaction including Type I migration, and the global disk potential which causes inward migration of secular resonances as the gas dissipates. We vary the initial total mass and spatial distribution of the planetesimals, the time scale of dissipation of nebular gas (which dissipates uniformly in space and exponentially in time), and orbits of Jupiter and Saturn. We end up with 1-5 planets in the terrestrial region. In order to maintain sufficient mass in this region in the presence of Type I migration, the time scale of gas dissipation needs to be 1-2 Myr. The final configurations and collisional histories strongly depend on the orbital eccentricity of Jupiter. If today’s eccentricity of Jupiter is used, then most of bodies in the asteroidal region are swept up within the terrestrial region owing to the inward migration of the secular resonance, and giant impacts between protoplanets occur most commonly around 10 Myr. If the orbital eccentricity of Jupiter is close to zero, as suggested in the Nice model, the effect of the secular resonance is negligible and a large amount of mass stays for a long period of time in the asteroidal region. With a circular orbit for Jupiter, giant impacts usually occur around 100 Myr, consistent with the accretion time scale indicated from isotope records. However, we inevitably have an Earth size planet at around 2 AU in this case. It is very difficult to obtain spatially concentrated terrestrial planets together with very late giant impacts, as long as we include all the above effects of gas and assume initial disks similar to the minimum mass solar nebular.  相似文献   
74.
We propose a mechanism for the oxidation of gaseous CO into CO2 occurring on the surface mineral hematite (Fe2O3(s)) in hot, CO2-rich planetary atmospheres, such as Venus. This mechanism is likely to constitute an important source of tropospheric CO2 on Venus and could at least partly address the CO2 stability problem in Venus’ stratosphere, since our results suggest that atmospheric CO2 is produced from CO oxidation via surface hematite at a rate of 0.4 petagrammes (Pg) CO2 per (Earth) year on Venus which is about 45% of the mass loss of CO2 via photolysis in the Venusian stratosphere. We also investigated CO oxidation via the hematite mechanism for a range of planetary scenarios and found that modern Earth and Mars are probably too cold for the mechanism to be important because the rate-limiting step, involving CO(g) reacting onto the hematite surface, proceeds much slower at lower temperatures. The mechanism may feature on extrasolar planets such as Gliese 581c or CoRoT-7b assuming they can maintain solid surface hematite which, e.g. starts to melt above about 1200 K. The mechanism may also be important for hot Hadean-type environments and for the emerging class of hot Super-Earths with planetary surface temperatures between about 600 and 900 K.  相似文献   
75.
In this article, an approach for the efficient numerical solution of multi-species reactive transport problems in porous media is described. The objective of this approach is to reformulate the given system of partial and ordinary differential equations (PDEs, ODEs) and algebraic equations (AEs), describing local equilibrium, in such a way that the couplings and nonlinearities are concentrated in a rather small number of equations, leading to the decoupling of some linear partial differential equations from the nonlinear system. Thus, the system is handled in the spirit of a global implicit approach (one step method) avoiding operator splitting techniques, solved by Newton’s method as the basic algorithmic ingredient. The reduction of the problem size helps to limit the large computational costs of numerical simulations of such problems. If the model contains equilibrium precipitation-dissolution reactions of minerals, then these are considered as complementarity conditions and rewritten as semismooth equations, and the whole nonlinear system is solved by the semismooth Newton method.  相似文献   
76.
We determined erosion rates on timescales of 101–104 years for two catchments in the northeastern Rhenish Massif, in order to unravel the Quaternary landscape evolution in a Variscan mountain range typical of central Europe. Spatially averaged erosion rates derived from in situ produced 10Be concentrations in stream sediment of the Aabach and M?hne watersheds range from 47 ± 6 to 65 ± 14 mm/ka and integrate over the last 9–13 ka. These erosion rates are similar to local rates of river incision and rock uplift in the Quaternary and to average denudation rates since the Mesozoic derived from fission track data. This suggests that rock uplift is balanced by denudation, i.e., the landscape is in a steady state. Short-term erosion rates were derived from suspended and dissolved river loads subsequent to (1) correcting for atmospheric and anthropogenic inputs, (2) establishing calibration curves that relate the amount of suspended load to discharge, and (3) estimating the amount of bedload. The resulting solid mass fluxes (suspended and bedload) agree with those derived from the sediment volume trapped in three reservoirs. However, resulting geogenic short-term erosion rates range from 9 to 25 mm/ka and are only about one-third of the rates derived from 10Be. Model simulations in combination with published sediment yield data suggest that this discrepancy is caused by at least three factors: (1) phases with higher precipitation and/or lower evapotranspiration, (2) rare flood events not captured in the short-term records, and (3) prolonged periods of climatic deterioration with increased erosion and sediment transport on hillslopes.  相似文献   
77.
This study investigates the disaster-induced population displacement scenario at individual household level in Bangladesh. ‘Population displacement’ is seen here as an alternative adaptation option to natural hazard for the survivors after cyclone Aila. The changes both in origin and destination community due to population displacement are described here on the basis of social ‘inclusion’ and ‘exclusion’ concept. The field survey was conducted during March–July 2010, and a sample of 280 respondents from 12 villages in southwest coastal Bangladesh was interviewed. Findings show that at the end of emergency aid, male members of the family started moving towards nearer cities to find an income. Based on the income and asset distribution at the community level, this study developed a societal cluster of displacement and demonstrates the societal changes because of cyclone-induced population displacement.  相似文献   
78.
We use a high-resolution ΛCDM numerical simulation to calculate the mass function of dark matter haloes down to the scale of dwarf galaxies, back to a redshift of 15, in a  50 h −1 Mpc  volume containing 80 million particles. Our low-redshift results allow us to probe low-σ density fluctuations significantly beyond the range of previous cosmological simulations. The Sheth & Tormen mass function provides an excellent match to all of our data except for redshifts of 10 and higher, where it overpredicts halo numbers increasingly with redshift, reaching roughly 50 per cent for the  1010–1011 M  haloes sampled at redshift 15. Our results confirm previous findings that the simulated halo mass function can be described solely by the variance of the mass distribution, and thus has no explicit redshift dependence. We provide an empirical fit to our data that corrects for the overprediction of extremely rare objects by the Sheth & Tormen mass function. This overprediction has implications for studies that use the number densities of similarly rare objects as cosmological probes. For example, the number density of high-redshift  ( z ≃ 6) QSOs  , which are thought to be hosted by haloes at 5σ peaks in the fluctuation field, are likely to be overpredicted by at least a factor of 50 per cent. We test the sensitivity of our results to force accuracy, starting redshift and halo-finding algorithm.  相似文献   
79.
Large‐scale simulations of flow in deformable porous media require efficient iterative methods for solving the involved systems of linear algebraic equations. Construction of efficient iterative methods is particularly challenging in problems with large jumps in material properties, which is often the case in geological applications, such as basin evolution at regional scales. The success of iterative methods for this type of problems depends strongly on finding effective preconditioners. This paper investigates how the block‐structured matrix system arising from single‐phase flow in elastic porous media should be preconditioned, in particular for highly discontinuous permeability and significant jumps in elastic properties. The most promising preconditioner combines algebraic multigrid with a Schur complement‐based exact block decomposition. The paper compares numerous block preconditioners with the aim of providing guidelines on how to formulate efficient preconditioners. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
80.
For decades, stochastic modellers have used computerized random number generators to produce random numeric sequences fitting a specified statistical distribution. Unfortunately, none of the random number generators we tested satisfactorily produced the target distribution. The result is generated distributions whose mean even diverges from the mean used to generate them, regardless of the length of run. Non‐uniform distributions from short sequences of random numbers are a major problem in stochastic climate generation, because truly uniform distributions are required to produce the intended climate parameter distributions. In order to ensure generation of a representative climate with the stochastic weather generator CLIGEN within a 30‐year run, we tested the climate output resulting from various random number generators. The resulting distributions of climate parameters showed significant departures from the target distributions in all cases. We traced this failure back to the uniform random number generators themselves. This paper proposes a quality control approach to select only those numbers that conform to the expected distribution being retained for subsequent use. The approach is based on goodness‐of‐fit analysis applied to the random numbers generated. Normally distributed deviates are further tested with confidence interval tests on their means and standard deviations. The positive effect of the new approach on the climate characteristics generated and the subsequent deterministic process‐based hydrology and soil erosion modelling are illustrated for four climatologically diverse sites. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号