首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4202篇
  免费   1311篇
  国内免费   24篇
测绘学   86篇
大气科学   155篇
地球物理   2243篇
地质学   1757篇
海洋学   315篇
天文学   617篇
综合类   3篇
自然地理   361篇
  2023年   4篇
  2022年   8篇
  2021年   57篇
  2020年   85篇
  2019年   221篇
  2018年   236篇
  2017年   328篇
  2016年   382篇
  2015年   392篇
  2014年   401篇
  2013年   493篇
  2012年   355篇
  2011年   355篇
  2010年   326篇
  2009年   218篇
  2008年   284篇
  2007年   217篇
  2006年   175篇
  2005年   159篇
  2004年   128篇
  2003年   135篇
  2002年   123篇
  2001年   99篇
  2000年   105篇
  1999年   33篇
  1998年   14篇
  1997年   14篇
  1996年   11篇
  1995年   10篇
  1994年   13篇
  1993年   11篇
  1992年   10篇
  1991年   14篇
  1990年   9篇
  1989年   9篇
  1988年   7篇
  1987年   9篇
  1986年   5篇
  1985年   11篇
  1984年   16篇
  1983年   6篇
  1982年   8篇
  1981年   8篇
  1980年   4篇
  1979年   8篇
  1978年   3篇
  1977年   4篇
  1975年   5篇
  1973年   2篇
  1968年   2篇
排序方式: 共有5537条查询结果,搜索用时 15 毫秒
221.
222.
223.
224.
225.
226.
A single specimen of the pelagic shrimps, Pasiphaea japonica Omori, 1976 (Pasiphaeidae) collected in the southeastern waters of Korea is described and illustrated. Although this species occurs widely in the Indo-West Pacific including the Japanese coast of the East/Japan Sea and the middle and southern parts of the East China Sea, this is the first record of the species and the genus in Korean waters. The species is distinguished from other congeners by the following combination of characteristics: non-carinate dorsal sixth abdominal somite with a terminal tooth, rudimentary pleurobranch on the eighth thoracic somite, merus of the first pereopod with more than eight spines, and almost entirely transparent white color.  相似文献   
227.
Hydrocarbon reservoir modelling and characterisation is a challenging subject within the oil and gas industry due to the lack of well data and the natural heterogeneities of the Earth’s subsurface. Integrating historical production data into the geo-modelling workflow, commonly designated by history matching, allows better reservoir characterisation and the possibility of predicting the reservoir behaviour. We present herein a geostatistical-based multi-objective history matching methodology. It starts with the generation of an initial ensemble of the subsurface petrophysical property of interest through stochastic sequential simulation. Each model is then ranked according the match between its dynamic response, after fluid flow simulation, and the observed available historical production data. This enables building regionalised Pareto fronts and the definition of a large ensemble of optimal subsurface Earth models that fit all the observed production data without compromising the exploration of the uncertainty space. The proposed geostatistical multi-objective history matching technique is successfully implemented in a benchmark synthetic reservoir dataset, the PUNQ-S3, where 12 objectives are targeted.  相似文献   
228.
We performed seismic waveform inversions and numerical landslide simulations of deep-seated landslides in Japan to understand the dynamic evolution of friction of the landslides. By comparing the forces obtained from a numerical simulation to those resolved from seismic waveform inversion, the coefficient of friction during sliding was well-constrained between 0.3 and 0.4 for landslides with volumes of 2–8 ×106 m3. We obtained similar coefficients of friction for landslides with similar scale and geology, and they are consistent with the empirical relationship between the volume and dynamic coefficient of friction obtained from the past studies. This hybrid method of the numerical simulation and seismic waveform inversion shows the possibility of reproducing or predicting the movement of a large-scale landslide. Our numerical simulation allows us to estimate the velocity distribution for each time step. The maximum velocity at the center of mass is 12–36 m/s and is proportional to the square root of the elevation change at the center of mass of the landslide body, which suggests that they can be estimated from the initial DEMs. About 20% of the total potential energy is transferred to the kinetic energy in our volume range. The combination of the seismic waveform inversion and the numerical simulation helps to obtain the well-constrained dynamic coefficients of friction and velocity distribution during sliding, which will be used in numerical models to estimate the hazard of potential landslides.  相似文献   
229.
Some studies suggest that creep parameters should be determined using a greater quantity of creep test data to provide more reliable prediction regarding the deformation of soft soils. This study aims to investigate the effect of loading duration on model updating. One‐dimensional consolidation data of intact Vanttila clay under different loading durations collected from the literature is used for demonstration. The Bayesian probabilistic method is used to identify all unknown parameters based on the consolidation data during the entire consolidation process, and their uncertainty can be quantified through the obtained posterior probability density functions. Additionally, the optimal models are also determined from among 9 model candidates. The analyses indicate that the optimal models can describe the creep behavior of intact soft soils under different loading durations, and the adopted method can evaluate the effect of loading duration on uncertainty in the creep analysis. The uncertainty of a specific model and its model parameters decreases as more creep data are involved in the updating process, and the updated models that use more creep data can better capture the deformation behavior of an intact sample. The proposed method can provide quantified uncertainty in the process of model updating and assist engineers to decide whether the creep test data are sufficient for the creep analysis.  相似文献   
230.

Background

The credibility and effectiveness of country climate targets under the Paris Agreement requires that, in all greenhouse gas (GHG) sectors, the accounted mitigation outcomes reflect genuine deviations from the type and magnitude of activities generating emissions in the base year or baseline. This is challenging for the forestry sector, as the future net emissions can change irrespective of actual management activities, because of age-related stand dynamics resulting from past management and natural disturbances. The solution implemented under the Kyoto Protocol (2013–2020) was accounting mitigation as deviation from a projected (forward-looking) “forest reference level”, which considered the age-related dynamics but also allowed including the assumed future implementation of approved policies. This caused controversies, as unverifiable counterfactual scenarios with inflated future harvest could lead to credits where no change in management has actually occurred, or conversely, failing to reflect in the accounts a policy-driven increase in net emissions. Instead, here we describe an approach to set reference levels based on the projected continuation of documented historical forest management practice, i.e. reflecting age-related dynamics but not the future impact of policies. We illustrate a possible method to implement this approach at the level of the European Union (EU) using the Carbon Budget Model.

Results

Using EU country data, we show that forest sinks between 2013 and 2016 were greater than that assumed in the 2013–2020 EU reference level under the Kyoto Protocol, which would lead to credits of 110–120 Mt CO2/year (capped at 70–80 Mt CO2/year, equivalent to 1.3% of 1990 EU total emissions). By modelling the continuation of management practice documented historically (2000–2009), we show that these credits are mostly due to the inclusion in the reference levels of policy-assumed harvest increases that never materialized. With our proposed approach, harvest is expected to increase (12% in 2030 at EU-level, relative to 2000–2009), but more slowly than in current forest reference levels, and only because of age-related dynamics, i.e. increased growing stocks in maturing forests.

Conclusions

Our science-based approach, compatible with the EU post-2020 climate legislation, helps to ensure that only genuine deviations from the continuation of historically documented forest management practices are accounted toward climate targets, therefore enhancing the consistency and comparability across GHG sectors. It provides flexibility for countries to increase harvest in future reference levels when justified by age-related dynamics. It offers a policy-neutral solution to the polarized debate on forest accounting (especially on bioenergy) and supports the credibility of forest sector mitigation under the Paris Agreement.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号