首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   24篇
  国内免费   3篇
测绘学   2篇
大气科学   8篇
地球物理   49篇
地质学   53篇
海洋学   11篇
天文学   62篇
自然地理   15篇
  2024年   2篇
  2023年   3篇
  2022年   1篇
  2020年   5篇
  2019年   9篇
  2018年   3篇
  2017年   9篇
  2016年   6篇
  2015年   11篇
  2014年   10篇
  2013年   12篇
  2012年   7篇
  2011年   7篇
  2010年   5篇
  2009年   11篇
  2008年   5篇
  2007年   5篇
  2006年   6篇
  2005年   5篇
  2004年   6篇
  2003年   6篇
  2002年   3篇
  2001年   6篇
  1999年   4篇
  1998年   2篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1985年   4篇
  1984年   6篇
  1983年   6篇
  1982年   4篇
  1980年   4篇
  1979年   1篇
  1978年   5篇
  1977年   4篇
  1976年   1篇
  1974年   2篇
  1973年   3篇
  1969年   1篇
  1957年   1篇
  1898年   2篇
排序方式: 共有200条查询结果,搜索用时 31 毫秒
21.
Regional landslide evaluation: Two Utah examples   总被引:1,自引:0,他引:1  
Landslide-susceptibility evaluations based on bedrock units, slope inclination, and aspect (slope orientation) incorporate the lithologic, stratigraphic, structural, and topographic passive conditions contributing to landsliding as outlined by Sharpe (1938). Generalized results based on passive condition analyses may define potential for failure over entire states or large parts of states, establishing an approximate landslide susceptibility for specific areas that are still in need of detailed study. This provides a preliminary susceptibility for use in land management and identifies high-priority areas for future detailed investigations. Landslides in the Bear River Range, north-central Utah, and the northern Wasatch Plateau, central Utah, illustrate application of these factors to regional landslide-susceptability evaluation. The greatest landslide potential exists on slopes of between 10 and 40%, with a westerly aspect, underlain by Wasatch or Salt Lake formations in the Bear River Range and on slopes of from 20 to 60% that are underlain by either North Horn or Price River formations in the northern Wasatch Plateau. Results from the two study areas are compared to a statewide landslide evaluation (Schroder 1971) in terms of passive conditions. Lithologic and stratigraphic conditions of the state and of the two study areas are nearly identical. Aspect data detect the presence or absence of structural conditions favoring failure in the two study areas rather than climatic factors as concluded in the statewide analysis. Topographic condition is more precisely stated in quantitative as opposed to qualitative terms to define failure-prone slopes in the two study areas.  相似文献   
22.
During 1975 and 1976, 433 isolates, representing 37 genera of fungi, were collected fromPotamogeton perfoliatus andRuppia maritima in the Chesapeake Bay. Seasonal distribution patterns of selected species are presented and their possible relationships to the declining host plant populations are discussed.  相似文献   
23.
In this study, we described a 14km-long paleoearthquakes surface rupture across the salt flats of western Qaidam Basin, 10km south of the Xorkol segment of the central Altyn Tagh Fault, with satellite images interpretation and field investigation methods. The surface rupture strikes on average about N80°E sub-parallel to the main Altyn Tagh Fault, but is composed of several stepping segments with markedly different strike ranging from 68°N~87°E. The surface rupture is marked by pressure ridges, sub-fault strands, tension-gashes, pull-apart and faulted basins, likely caused by left-lateral strike-slip faulting. More than 30 pressure ridges can be distinguished with various rectangular, elliptical or elongated shapes. Most long axis of the ridges are oblique(90°N~140°E)to, but a few are nearly parallel to the surface rupture strike. The ridge sizes vary also, with heights from 1 to 15m, widths from several to 60m, and lengths from 10 to 100m. The overall size of these pressure ridges is similar to those found along the Altyn Tagh Fault, for instance, south of Pingding Shan or across Xorkol. Right-stepping 0.5~1m-deep gashes or sub-faults, with lengths from a few meters to several hundred meters, are distributed obliquely between ridges at an angle reaching 30°. The sub-faults are characterized with SE or NW facing 0.5~1m-high scarps. Several pull-apart and faulted basins are bounded by faults along the eastern part of the surface rupture. One large pull-apart basins are 6~7m deep and 400m wide. A faulted basin, 80m wide, 500m long and 3m deep, is bounded by 2 left-stepping left-lateral faults and 4 right-stepping normal faults. Two to three m-wide gashes are often seen on pressure ridges, and some ridges are left-laterally faulted and cut into several parts, probably owing to the occurrence of repetitive earthquakes. The OSL dating indicates that the most recent rupture might occur during Holocene.
Southwestwards the rupture trace disappears a few hundred meters north of a south dipping thrust scarp bounding uplifted and folded Plio-Quaternary sediments to the south. Thrust scarps can be followed southwestward for another 12km and suggest a connection with the south Pingding Shan Fault, a left-lateral splay of the main Altyn Tagh Fault. To the northeast the rupture trace progressively veers to the east and is seen cross-cutting the bajada south of Datonggou Nanshan and merging with active thrusts clearly outlined by south facing cumulative scarps across the fans. The geometry of this strike-slip fault trace and the clear young seismic geomorphology typifies the present and tectonically active link between left-lateral strike-slip faulting and thrusting along the eastern termination of the Altyn Tagh Fault, a process responsible for the growth of the Tibetan plateau at its northeastern margin. The discrete relation between thrusting and strike-slip faulting suggests discontinuous transfer of strain from strike-slip faulting to thrusting and thus stepwise northeastward slip-rate decrease along the Altyn Tagh Fault after each strike-slip/thrust junction.  相似文献   
24.
25.
We present a general recipe for constructing N -body realizations of galaxies comprising near spherical and disc components. First, an exact spherical distribution function for the spheroids (halo and bulge) is determined, such that it is in equilibrium with the gravitational monopole of the disc components. Second, an N -body realization of this model is adapted to the full disc potential by growing the latter adiabatically from its monopole. Finally, the disc is sampled with particles drawn from an appropriate distribution function, avoiding local-Maxwellian approximations. We performed test simulations and find that the halo and bulge radial density profile very closely match their target model, while they become slightly oblate due to the added disc gravity. Our findings suggest that vertical thickening of the initially thin disc is caused predominantly by spiral and bar instabilities, which also result in a radial re-distribution of matter, rather than scattering off interloping massive halo particles.  相似文献   
26.
The Maâdna structure is located approximately 400 km south of Algiers (33°19′ N, 4°19′ E) and emplaced in Upper‐Cretaceous to Eocene limestones. Although accepted as an impact crater on the basis of alleged observations of shock‐diagnostic features such as planar deformation features (PDFs) in quartz grains, previous works were limited and further studies are desirable to ascertain the structure formation process and its age. For this purpose, the crater was investigated using a multidisciplinary approach including field observations, detailed cartography of the different geological and structural units, geophysical surveys, anisotropy of magnetic susceptibility, paleomagnetism, and petrography of the collected samples. We found that the magnetic and gravimetric profiles highlight a succession of positive and negative anomalies, ones that might indicate the occurrence of a causative material which is at least in part identical. Geophysical analysis and modeling suggest the presence of this material within the crater at a depth of about 100 m below the surface. Using soil magnetic susceptibility measurements, the shallowest magnetized zone in the central part of the crater is identified as a recently deposited material. Paleomagnetic and rock magnetic experiments combined with petrographic observations show that detrital hematite is the main magnetic carrier although often associated with magnetite. A primary magnetization is inferred from a stable remanence with both normal and reverse directions, carried by these two minerals. Although this is supposed to be a chemical remagnetization, its normal polarity nature is considered to be a Pliocene component, subsequent to the crater formation. The pole falls onto the Miocene‐Pliocene part of the African Apparent Polar Wander Path (APWP). Consequently, we estimate the formation of the Maâdna crater to have occurred during the time period extending from the Late Miocene to the Early Pliocene. Unfortunately, our field and laboratory investigations do not allow us to confirm an impact origin for the crater as neither shatter cones, nor shocked minerals, were found. A dissolved diapir with inverted relief is suggested as an alternative to the impact hypothesis, which can still be considered as plausible. Only a drilling may provide a definite answer.  相似文献   
27.
A detailed integrated stratigraphic study (biostratigraphy and magnetostratigraphy) was carried out on five sections from the western part of the Bavarian Upper Freshwater Molasse of the North Alpine Foreland Basin (NAFB), greatly improving the chronostratigraphy of these sediments. The sections belong to the lithostratigraphic units Limnische Untere Serie (UL) and Fluviatile Untere Serie (UF) and contain 19 (mostly new) small-mammal bearing levels, significantly refining the local biostratigraphy. Radiometric ages obtained from glass shards from tuff horizons are used together with the biostratigraphic information for constructing and confirming the magnetostratigraphic correlation of the studied sections to the Astronomical Tuned Time Scale (ANTS04; Lourens et al. in Geologic Time Scale 2004, Cambridge University Press, 2004). This correlation implies that the UL lithostratigraphic unit corresponds to the latest Ottnangian and the Early Karpatian, whereas the UF corresponds to the Karpatian and the Early Badenian. This indicates that the Brackish- to Freshwater Molasse transition already occurred during the late Ottnangian. The pre-Riesian hiatus occurred in the latest Karpatian and lower Early Badenian in Eastern Bavaria and Bohemia and in the Late Karpatian and earliest Badenian in Western Bavaria. The geochemical and Ar–Ar data of volcanic ashes suggest that highly evolved silicic magmas from a single volcano or volcanic center, characterized by a uniform Nd isotopic composition, erupted repetitively over the course of at least 1.6 Myr. Three phases of eruptive activity were identified at 16.1 ± 0.2 Ma (Zahling-2), 15.6 ± 0.4 Ma (Krumbad), and 14.5 ± 0.2 Ma (Heilsberg, Hegau). The correlation of the local biostratigraphic zonation to the ANTS04 enables further the characterization of both the Ottnangian–Karpatian and Karpatian–Badenian boundaries in the NAFB by small-mammal biostratigraphy. According to these results the Ottnangian–Karpatian boundary is contemporaneous with the first appearance datum of Megacricetodon bavaricus (in the size of the type population) and the first common occurrence of Keramidomys thaleri, whereas Ligerimys florancei, Melissiodon dominans and Prodeinotherium aff. bavaricum have been already disappeared during the late Ottnangian. The Karpatian–Badenian boundary is characterized by a significant size increase of the large Megacricetodon lineage and possibly a (re-)immigration of Prodeinotherium bavaricum.  相似文献   
28.
Meteoritical Bulletin 111 contains the 3094 meteorites approved by the Nomenclature Committee of the Meteoritical Society in 2022. It includes 11 falls (Antonin, Botohilitano, Cranfield, Golden, Great Salt Lake, Longde, Msied, Ponggo, Qiquanhu, Tiglit, Traspena), with 2533 ordinary chondrites, 165 HED, 123 carbonaceous chondrites (including 4 ungrouped), 82 lunar meteorites, 28 Rumuruti chondrites, 27 iron meteorites, 23 ureilites, 22 mesosiderites, 22 Martian meteorites, 21 primitive achondrites (one ungrouped), 17 ungrouped achondrites, 13 pallasites, 7 enstatite achondrites, 6 enstatite chondrites, and 5 angrites. Of the meteorites classified in 2022, 1787 were from Antarctica, 1078 from Africa, 180 from South America, 34 from Asia, 6 from North America, 4 from Europe, and 1 from Oceania.  相似文献   
29.
A theory of pressure sensor response in snow is derived and used to examine the sources of measurement errors in snow water equivalent (SWE) pressure sensors. Measurement errors in SWE are caused by differences in the compressibility of the pressure sensor and the adjacent snow layer, which produces a shear stress along the perimeter of the sensor. When the temperature at the base of the snow cover equals 0 °C, differences in the snowmelt rate between the snow–SWE sensor interface and the adjacent snow–soil interface may also produce a shear stress along the sensor's perimeter. This shear stress perturbs the pressure field over the sensor, producing SWE measurement errors. Snow creep acts to reduce shear stresses along the SWE sensor's perimeter at a rate that is inversely proportional to the snow viscosity. For sustained periods of differential snowmelt, a difference in the mass of snow over the sensor compared with the surrounding soil will develop, producing additional permanent errors in SWE measurements. The theory indicates that SWE pressure sensor performance can be improved by designing a sensor with a high Young's modulus (low compressibility), low aspect ratio, large diameter and thermal properties that match those of the surrounding soil. Simulations of SWE pressure sensor errors using the theory are in close agreement with observed errors and may provide a means to correct historical SWE measurements for use in hydrological hindcast or climate studies. Published in 2003 by John Wiley & Sons, Ltd.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号