首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   10篇
  国内免费   3篇
测绘学   2篇
大气科学   25篇
地球物理   35篇
地质学   33篇
海洋学   8篇
天文学   13篇
自然地理   36篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   3篇
  2018年   6篇
  2017年   2篇
  2016年   8篇
  2015年   5篇
  2014年   7篇
  2013年   11篇
  2012年   4篇
  2011年   8篇
  2010年   6篇
  2009年   6篇
  2008年   7篇
  2007年   11篇
  2006年   8篇
  2005年   10篇
  2004年   3篇
  2003年   5篇
  2002年   5篇
  2001年   5篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1990年   3篇
排序方式: 共有152条查询结果,搜索用时 15 毫秒
81.
Seismic‐scale continuous exposures of an Upper Carboniferous (Bashkirian–Moscovian) carbonate platform (N Spain) provide detailed information about the lithofacies and stratal geometries (quantified with differential global positioning system measurements) of microbial boundstone‐dominated, steep prograding and aggrading platform margins. Progradational and aggradational platform‐to‐slope transects are characterized by distinct lithological features and stratal patterns that can be applied to the understanding of geometrically comparable, high‐relief depositional systems. The Bashkirian is characterized by rapid progradation at rates of 415–970 m My?1. Characteristic outer‐platform facies are high‐energy grainstones with coated intraclasts, ooids and pisoids, moderate‐energy algal‐skeletal grainstones to packstones and lower energy algal packstone and boundstone units. The Moscovian aggradational phase is characterized by aggradation rates of 108 m My?1. Coated‐grain shoals are less common, whereas crinoidal bars nucleated in well‐circulated settings below wave‐base. Boundstones form a belt (30–300 m wide) at the platform break and interfinger inwards with massive algal‐skeletal wackestones (mud‐rich banks). The progradational phase has divergent outer‐platform strata with basinward dips of 12° to 2°. Steep clinoforms with dips of 20–28° are 650–750 m in relief and possibly sigmoidal to concave in the lower part. The basinward‐dipping outer‐platform strata might be depositional for less than 6°, consistent with lithofacies deepening seaward. The basinward dip is attributed to the downward shift of upper‐slope boundstone, forced by late highstand and relative sea‐level fall, and to compaction‐induced differential subsidence during progradation. The aggradational phase is characterized by horizontally layered platform strata. Clinoforms steepen to 30–45° reaching heights of 850 m and are planar to concave. The evolution from progradation to aggradation, at the Bashkirian–Moscovian boundary, is attributed to increased foreland‐basin subsidence and decreased boundstone accumulation rates. Progradation was primarily controlled by boundstone growth rather than by highstand shedding from the platform top. Within the major phases, aggradational–progradational increments are produced by third‐ to fourth‐order relative sea‐level fluctuations.  相似文献   
82.
83.
The interaction of the lanthanides (Ln) with humic substances (HS) was investigated with a novel chemical speciation tool, Capillary Electrophoresis-Inductively Coupled Plasma Mass Spectrometry (CE-ICP-MS). By using an EDTA-ligand competition method, a bi-modal species distribution of LnEDTA and LnHS is attained, separated by CE, and detected online by sector field ICP-MS. We quantified the binding of all 14 rare earth elements (REEs), Sc and Y with Suwannee river fulvic acid, Leonardite coal humic acid, and Elliot soil humic acid under environmental conditions (pH 6-9, 0.001-0.1 mol L−1 NaNO3, 1-1000 nmol L−1 Ln, 10-20 mg L−1 HS). Conditional binding constants for REE-HS interaction (Kc) ranged from 8.9 < log Kc < 16.5 under all experimental conditions, and display a lanthanide contraction effect, ΔLKc: a gradual increase in Kc from La to Lu by 2-3 orders of magnitude as a function of decreasing ionic radius. HS polyelectrolyte effects cause Kc to increase with increasing pH and decreasing ionic strength. ΔLKc increases significantly with increasing pH, and likely with decreasing ionic strength. Based on a strong correlation between ΔLKc values and denticity for organic acids, we suggest that HS form a range of tri- to tetra-dentate complexes under environmental conditions. These results confirm HS to be a strong complexing agent for Ln, and show rigorous experimental evidence for potential REE fractionation by HS complexation.  相似文献   
84.
Although uncertainty about structures of environmental models (conceptual uncertainty) is often acknowledged to be the main source of uncertainty in model predictions, it is rarely considered in environmental modelling. Rather, formal uncertainty analyses have traditionally focused on model parameters and input data as the principal source of uncertainty in model predictions. The traditional approach to model uncertainty analysis, which considers only a single conceptual model, may fail to adequately sample the relevant space of plausible conceptual models. As such, it is prone to modelling bias and underestimation of predictive uncertainty.  相似文献   
85.
Phytoplankton and zooplankton were monitored during 2 years in four eutrophic shallow lakes (two turbid and two clear water) from two wetland reserves in Belgium. In each wetland, phytoplankton biomass was significantly higher in the turbid lake than in the clear water lake. Although total macrozooplankton biomass and the contribution of daphnids to total zooplankton biomass was comparable in the clear water and the turbid lakes, the grazing pressure of macrozooplankton on phytoplankton as estimated from zooplankton to phytoplankton biomass ratios was higher in the clear water lakes. Estimated grazing by daphnids in the clear water lakes was always high in spring. In summer, however, daphnid biomass was low or daphnids were even absent during prolonged periods. During those periods phytoplankton was probably controlled by smaller macrozooplankton or by submerged macrophytes through nutrient competition, allelopathic effects or increased sedimentation rates in the macrophyte vegetation.  相似文献   
86.
In this paper we examine whether gully-head morphology can be used as an indicator for gully development and, hence, for sediment production. A survey was conducted at five hillslopes in the Sierra de Gata where different types of channel heads occur close to each other. The survey included measurements of morphologic and pedologic properties, ground surface, channel and catchment characteristics of every gully head present (n = 59). On the basis of the observed morphologies, the heads were subdivided into four types: gradual, transitional (a short inclined section), abrupt and rilled-abrupt. The analyses showed that it is possible to explain the differences of gully heads and the role of some environmental factors on the basis of their morphologies, at least for the gradual and the abrupt types. The results suggested that steep headcuts (abrupt) were formed from secondary headcuts in the channel, which migrated upstream. The abrupt headcuts were always formed in more than one soil layer of which one was a resistant (stony) layer. However, shear strength measurements (at saturation) showed that the top layer was not always the most resistant one. Width–depth relationships indicated that gradual type headcuts were controlled by fluvial processes and abrupt headcuts by a combination of fluvial and mass-wasting processes. Gradual types occurred more downslope than the abrupt types suggesting that the incisions started by fluvial processes and migrated upwards when knickpoints developed in the channel. The rilled-abrupt types are still actively retreating. Thus, the abrupt types correspond to slower retreat rates. Abrupt gully heads may deteriorate into transitional types when plunge-pool erosion becomes less effective. The conceptual model is supported by data from ephemeral gullies in two other study areas (Sierra de la Torrecilla, Spain, and Alentejo, Portugal). Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
87.
Srinivasan et al. provide an interesting overview of the challenges for long-term socio-hydrological predictions. Although agreeing with most of the statements made, we argue for the need to take socio-hydrological analysis a step further and add some fundamental considerations, especially concerning the crucial importance of many (conscious and unconscious) assumptions made upfront of the modelling exercise. Eventual assumptions of technological determinism need correction: Models are not “value-free”, but uncertain, subjective and a product of the society in which they were shaped. It is important to acknowledge this uncertainty and bias when making decisions based on socio-hydrological models, considering also that these models are “social and political actors” in and by themselves. Furthermore, socio-hydrological models require a transdisciplinary approach, since physical water availability is only one of the boundary conditions for society. Last but not least, interaction with stakeholders remains important to enable understanding of what the variable of interest is.  相似文献   
88.
How to improve attribution of changes in drought and flood impacts   总被引:5,自引:4,他引:1  
For the development of sustainable, efficient risk management strategies for the hydrological extremes of droughts and floods, it is essential to understand the temporal changes of impacts, and their respective causes and interactions. In particular, little is known about changes in vulnerability and their influence on drought and flood impacts. We present a fictitious dialogue between two experts, one in droughts and the other in floods, showing that the main obstacles to scientific advancement in this area are both a lack of data and a lack of commonly accepted approaches. The drought and flood experts “discuss” available data and methods and we suggest a complementary approach. This approach consists of collecting a large number of single or multiple paired-event case studies from catchments around the world, undertaking detailed analyses of changes in impacts and drivers, and carrying out a comparative analysis. The advantages of this approach are that it allows detailed context- and location-specific assessments based on the paired-event analyses, and reveals general, transferable conclusions based on the comparative analysis of various case studies. Additionally, it is quite flexible in terms of data and can accommodate differences between floods and droughts.  相似文献   
89.
90.
When modelling the turbulent dispersion of a passive tracer using Reynolds-averaged Navier–Stokes (RANS) simulations, two different approaches can be used. The first consists of solving a transport equation for a scalar, where the governing parameters are the mean velocity field and the turbulent diffusion coefficient, given by the ratio of the turbulent viscosity and the turbulent Schmidt number Sc t . The second approach uses a Lagrangian particle tracking algorithm, where the governing parameters are the mean velocity and the fluctuating velocity field, which is determined from the turbulence kinetic energy and the Lagrangian time T L . A comparison between the two approaches and wind-tunnel data for the dispersion in the wake of a rectangular building immersed in a neutral atmospheric boundary layer (ABL) is presented. Particular attention was paid to the influence of turbulence model parameters on the flow and concentration field. In addition, an approach to estimate Sc t and T L based on the calculated flow field is proposed. The results show that applying modified turbulence model constants to enable correct modelling of the ABL improves the prediction for the velocity and concentration fields when the modification is restricted to the region for which it was derived. The difference between simulated and measured concentrations is smaller than 25% or the uncertainty of the data on 76% of the points when solving the transport equation for a scalar with the proposed formulation for Sc t , and on 69% of the points when using the Lagrangian particle tracking with the proposed formulation for T L .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号