全文获取类型
收费全文 | 506篇 |
免费 | 17篇 |
国内免费 | 8篇 |
专业分类
测绘学 | 20篇 |
大气科学 | 35篇 |
地球物理 | 134篇 |
地质学 | 185篇 |
海洋学 | 55篇 |
天文学 | 67篇 |
综合类 | 6篇 |
自然地理 | 29篇 |
出版年
2024年 | 1篇 |
2023年 | 6篇 |
2021年 | 6篇 |
2020年 | 10篇 |
2019年 | 21篇 |
2018年 | 21篇 |
2017年 | 15篇 |
2016年 | 25篇 |
2015年 | 24篇 |
2014年 | 21篇 |
2013年 | 31篇 |
2012年 | 21篇 |
2011年 | 29篇 |
2010年 | 36篇 |
2009年 | 33篇 |
2008年 | 27篇 |
2007年 | 29篇 |
2006年 | 32篇 |
2005年 | 24篇 |
2004年 | 15篇 |
2003年 | 11篇 |
2002年 | 18篇 |
2001年 | 13篇 |
2000年 | 9篇 |
1999年 | 8篇 |
1998年 | 5篇 |
1997年 | 1篇 |
1996年 | 7篇 |
1995年 | 3篇 |
1994年 | 4篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 2篇 |
1985年 | 3篇 |
1984年 | 2篇 |
1983年 | 3篇 |
1982年 | 2篇 |
1981年 | 1篇 |
1980年 | 2篇 |
1979年 | 1篇 |
1978年 | 2篇 |
1977年 | 1篇 |
1975年 | 2篇 |
1972年 | 1篇 |
1968年 | 1篇 |
排序方式: 共有531条查询结果,搜索用时 25 毫秒
81.
Induced seismicity around the Tous New Dam (Spain) 总被引:2,自引:0,他引:2
82.
Georg Schettler Jens Mingram Jörg F. W. Negendank Liu Jiaqi 《Journal of Paleolimnology》2006,35(2):271-288
Palaeovariations of the atmospheric 210Pb flux in Northeast China (Long Gang area, Jilin province), quantified by high resolution 210Pb measurements on seasonally laminated sediments of Lake Sihailongwan are presented on decadal scale. The mean flux of unsupported
210Pb between 1790 and 1970 for the centre of the lake basin is 517 Bq m−2 yr−1 with maximum deviations between −23% and +27% of this value. Flux rates above this average were found between 1783 and 1813,
around 1836, and between 1860 and 1901. The mean 210Pbexc flux rates derived were clearly lower around 1821, 1908, 1930, and 1953. The 210Pbexc flux reached its minimum of 344 Bq m−2 yr−1 during the period 1977–1982. The atmospheric flux of unsupported 210Pb is correlated with the precipitation frequency during the summer monsoon and shows coinciding variability with geochemical
proxies that document the groundwater inflow into the lake. Al2O3-rich dust of remote provenance scavenged by wet-deposition in the rainy season is the major carrier of the atmospheric 210Pbexc flux. 相似文献
83.
84.
Lars Chresten Lund-Hansen Morten Pejrup Jens Valeur Anders Jensen 《Estuarine, Coastal and Shelf Science》1994,38(6)
Gross sedimentation rates (GSR) have been measured using sediment traps placed at nine different levels above the bed (0·3, 0·5, 0·8, 1·0, 2·0, 4·0, 6·0, 8·0 and 10·0 m). The sediment traps were deployed for 1·25 years and recovered 28 times during the study period. Low average GSR values of 5·5 g m-2 day-1 were obtained at 10·0 m, and high average GSR values of 114·8 g m-2 day-1 were obtained at 0·3 m. An expression for the eddy diffusion coefficient of suspended particulate matter (Ks), based on the measured GSR is given. The expression has been used for modelling of Ks at the different trap levels above the bed. High values (≈42 cm2 s-1) of Ks were obtained at the upper traps, whereas low values (≈2 cm2 s-1) were obtained near the bed. Comparison between level of turbulent energy in terms of shear stress at the boundaries of the water column, i.e. from the wind and the bed flow, showed that wind energy exceeded that of the bed flow by a factor 16. At 5·0 m Ks was positively correlated (r=0·66) to the eddy diffusion coefficient of momentum (Km) derived from the wind energy transfer to the water, giving an average β of 0·5 for Ks =βKm. The density difference between surface and bottom waters has been designated a parameter of stratification, and is discussed in relation to variations of Ks and Km . 相似文献
85.
Søren Laurentius Nielsen Kaj Sand-Jensen Jens Borum Ole Geertz-Hansen 《Estuaries and Coasts》2002,25(5):930-937
We present a comparative analysis of 1400 data series of water chemistry (particularly nitrogen and phosphorus concentrations), phytoplankton biomass as chlorophylla (chla) concentrations, concentrations of suspended matter and Secchi depth transparency collected from the mid-1980s to the mid-1990s from 162 stations in 27 Danish fjords and coastal waters. The results demonstrate that Danish coastal waters were heavily eutrophied and had high particle concentrations and turbid waters. Median values were 5.1 μg chla 1−1, 10.0 mg DW 1−1 of suspended particles, and Secchi depth of 3.6 m. Chlorophyll concentration was strongly linked to the total-nitrogen concentration. The strength of this relationship increased from spring to summer as the concentration of total nitrogen declined. During summer, total nitrogen concentrations accounted for about 60% of the variability in chlorophyll concentrations among the different coastal systems. The relationship between chlorophyll and total phosphorus was more consistant over the year and correlations were much weaker than encountered for total nitrogen. Secchi depth could be predicted with good precision from measurements of chlorophyll and suspended matter. In a multiple stepwise regression model with In-transformed values the two variables accounted for most of the variability in water transparency for the different seasons and the period March–October as a whole (c. 80%). We were able to demonstrate a significant relationship between total nitrogen and Secchi depth, with important implications for management purposes. 相似文献
86.
Erika?Kaufmann Günter?Kargl Norbert?I.?K?mleEmail author Manfred?Steller Johann?Hasiba Florian?Tatschl Stefan?Ulamec Jens?Biele Marc?Engelhardt Jens?Romstedt 《Earth, Moon, and Planets》2009,105(1):11-29
One possibility to explore the subsurface layers of icy bodies is to use a probe with a “hot tip", which is able to penetrate
ice layers by melting. Such probes have been built and used in the past for the exploration of terrestrial polar ice sheets
and may also become useful tools to explore other icy layers in the Solar System. Examples for such layers are the polar areas
of Mars or the icy crust of Jupiter’s moon Europa. However, while on Earth a heated probe launched into an ice sheet always
causes melting with subsequent refreezing, the behaviour of such a probe in a low pressure environment is quite different.
We report on the results of some experiments with a simple “melting probe" prototype with two different kinds of hot tips
in a vacuum environment. For one of the tips the probe moved into two types of ice samples: (i) compact water ice and (ii)
porous water ice with a snow (firn) like texture. It was also found that the penetration behaviour was basically different
for the two sample types even when the same kind of tip was used. While in the porous sample the ice was only subliming, the
phase changes occurring during the interaction of the tip with the compact ice are much more complex. Here alternating phases
of melting and sublimation occur. The absence of the liquid phase has severe consequences on the performance of a “melting
probe" under vacuum conditions: In this environment we find a high thermal resistance between the probe surface and the underlying
ice. Therefore, only a low percentage of the heat that is generated in the tip is used to melt or sublime the ice, the bulk
of the power is transferred towards the rear end of the probe. This is particularly a problem in the initial phases of an
ice penetration experiment, when the probe has not yet penetrated the ice over its whole length. In the compact ice sample,
phases could be observed, where a high enough gas pressure had built up locally underneath the probe, so that melting becomes
possible. Only during these melting periods the thermal contact between the probe and the ice is good and in consequence the
melting probe works effectively. 相似文献
87.
Wind-induced drift of objects at sea: The leeway field method 总被引:3,自引:0,他引:3
Øyvind Breivik Arthur A. AllenChristophe Maisondieu Jens Christian Roth 《Applied Ocean Research》2011,33(2):100-109
A method for conducting leeway field experiments to establish the drift properties of small objects (0.1-25 m) is described. The objective is to define a standardized and unambiguous procedure for condensing the drift properties down to a set of coefficients that may be incorporated into existing stochastic trajectory forecast models for drifting objects of concern to search and rescue operations and other activities involving vessels lost at sea such as containers with hazardous material.An operational definition of the slip or wind and wave-induced motion of a drifting object relative to the ambient current is proposed. This definition taken together with a strict adherence to a 10 m wind speed allows us to refer unambiguously to the leeway of a drifting object. We recommend that all objects if possible be studied using what we term the direct method, where the object’s leeway is studied directly using an attached current meter.We establish a minimum set of parameters that should be estimated for a drifting object for it to be included in the operational forecast models used for prediction of search areas for drifting objects.We divide drifting objects into four categories, depending on their size. For the smaller objects (less than 0.5 m), an indirect method of measuring the object’s motion relative to the ambient current must be used. For larger objects, direct measurement of the motion through the near-surface water masses is strongly recommended. Larger objects are categorized according to the ability to attach current meters and wind monitoring systems to them.The leeway field method proposed here is illustrated with results from field work where three objects were studied in their distress configuration; a 1:3.3 sized model of a 40-foot Shipping container, a World War II mine and a 220 l (55-gallon) oil drum. 相似文献
88.
89.
Abstract– To better understand the impact cratering process and its environmental consequences at the local to global scale, it is important to know when in the geological record of an impact crater the impact‐related processes cease. In many instances, this occurs with the end of early crater modification, leaving an obvious sedimentological boundary between impactites and secular sediments. However, in marine‐target craters the transition from early crater collapse (i.e., water resurge) to postimpact sedimentation can appear gradual. With the a priori assumption that the reworked target materials of the resurge deposits have a different chemical composition to the secular sediments we use chemostratigraphy (δ13Ccarb, %Corg, major elements) of sediments from the Chesapeake Bay, Lockne, and Tvären craters, to define this boundary. We show that the end of impact‐related sedimentation in these cases is fairly rapid, and does not necessarily coincide with a visual boundary (e.g., grain size shift). Therefore, in some cases, the boundary is more precisely determined by chemostratigraphy, especially carbonate carbon isotope variations, rather than by visual inspection. It is also shown how chemostratigraphy can confirm the age of marine‐target craters that were previously determined by biostratigraphy; by comparing postimpact carbon isotope trends with established regional trends. 相似文献
90.
Veronique Dehant William Folkner Etienne Renotte Daniel Orban Sami Asmar Georges Balmino Jean-Pierre Barriot Jeremy Benoist Richard Biancale Jens Biele Frank Budnik Stefaan Burger Olivier de Viron Bernd Häusler Özgur Karatekin Sébastien Le Maistre Philippe Lognonné Michel Menvielle Michel Mitrovic Martin Pätzold Marie Yseboodt 《Planetary and Space Science》2009,57(8-9):1050-1067
The paper presents the concept, the objectives, the approach used, and the expected performances and accuracies of a radioscience experiment based on a radio link between the Earth and the surface of Mars. This experiment involves radioscience equipment installed on a lander at the surface of Mars. The experiment with the generic name lander radioscience (LaRa) consists of an X-band transponder that has been designed to obtain, over at least one Martian year, two-way Doppler measurements from the radio link between the ExoMars lander and the Earth (ExoMars is an ESA mission to Mars due to launch in 2013). These Doppler measurements will be used to obtain Mars’ orientation in space and rotation (precession and nutations, and length-of-day variations). More specifically, the relative position of the lander on the surface of Mars with respect to the Earth ground stations allows reconstructing Mars’ time varying orientation and rotation in space.Precession will be determined with an accuracy better by a factor of 4 (better than the 0.1% level) with respect to the present-day accuracy after only a few months at the Martian surface. This precession determination will, in turn, improve the determination of the moment of inertia of the whole planet (mantle plus core) and the radius of the core: for a specific interior composition or even for a range of possible compositions, the core radius is expected to be determined with a precision decreasing to a few tens of kilometers.A fairly precise measurement of variations in the orientation of Mars’ spin axis will enable, in addition to the determination of the moment of inertia of the core, an even better determination of the size of the core via the core resonance in the nutation amplitudes. When the core is liquid, the free core nutation (FCN) resonance induces a change in the nutation amplitudes, with respect to their values for a solid planet, at the percent level in the large semi-annual prograde nutation amplitude and even more (a few percent, a few tens of percent or more, depending on the FCN period) for the retrograde ter-annual nutation amplitude. The resonance amplification depends on the size, moment of inertia, and flattening of the core. For a large core, the amplification can be very large, ensuring the detection of the FCN, and determination of the core moment of inertia.The measurement of variations in Mars’ rotation also determines variations of the angular momentum due to seasonal mass transfer between the atmosphere and ice caps. Observations even for a short period of 180 days at the surface of Mars will decrease the uncertainty by a factor of two with respect to the present knowledge of these quantities (at the 10% level).The ultimate objectives of the proposed experiment are to obtain information on Mars’ interior and on the sublimation/condensation of CO2 in Mars’ atmosphere. Improved knowledge of the interior will help us to better understand the formation and evolution of Mars. Improved knowledge of the CO2 sublimation/condensation cycle will enable better understanding of the circulation and dynamics of Mars’ atmosphere. 相似文献