首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   510篇
  免费   19篇
  国内免费   8篇
测绘学   20篇
大气科学   35篇
地球物理   134篇
地质学   190篇
海洋学   55篇
天文学   68篇
综合类   6篇
自然地理   29篇
  2024年   1篇
  2023年   6篇
  2021年   6篇
  2020年   10篇
  2019年   21篇
  2018年   21篇
  2017年   15篇
  2016年   25篇
  2015年   24篇
  2014年   21篇
  2013年   31篇
  2012年   21篇
  2011年   29篇
  2010年   36篇
  2009年   33篇
  2008年   27篇
  2007年   29篇
  2006年   32篇
  2005年   29篇
  2004年   15篇
  2003年   11篇
  2002年   18篇
  2001年   13篇
  2000年   10篇
  1999年   8篇
  1998年   5篇
  1997年   1篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1975年   2篇
  1972年   1篇
  1968年   1篇
排序方式: 共有537条查询结果,搜索用时 15 毫秒
41.
An integrated groundwater/surface water hydrological model with a 1 km2 grid has been constructed for Denmark covering 43,000 km2. The model is composed of a relatively simple root zone component for estimating the net precipitation, a comprehensive three-dimensional groundwater component for estimating recharge to and hydraulic heads in different geological layers, and a river component for streamflow routing and calculating stream–aquifer interaction. The model was constructed on the basis of the MIKE SHE code and by utilising comprehensive national databases on geology, soil, topography, river systems, climate and hydrology. The present paper describes the modelling process for the 7330 km2 island of Sjælland with emphasis on the problems experienced in combining the classical paradigms of groundwater modelling, such as inverse modelling of steady-state conditions, and catchment modelling, focussing on dynamic conditions and discharge simulation. Three model versions with different assumptions on input data and parameter values were required until the performance of the final, according to pre-defined accuracy criteria, model was evaluated as being satisfactory. The paper highlights the methodological issues related to establishment of performance criteria, parameterisation and assessment of parameter values from field data, calibration and validation test schemes. Most of the parameter values were assessed directly from field data, while about 10 ‘free’ parameters were subject to calibration using a combination of inverse steady-state groundwater modelling and manual trial-and-error dynamic groundwater/surface water modelling. Emphasising the importance of tests against independent data, the validation schemes included combinations of split-sample tests (another period) and proxy-basin tests (another area).  相似文献   
42.
Accurate prediction of water and air Iran sport parameters in variably saturated soil is necessary for modeling of soil-vapor extraction (SVE) at soil sites contaminated with volatile organic chemicals (VOCs). An expression for predicting saturated water permeability (kl,s) in undisturbed soils from the soil total porosity and the field capacity soil-water content was developed by fitting a tortuous-tube fluid flow model to measured water permeability and gas diffusivity data. The new kl,s expression gave accurate predictions when tested against independent kl,s data. The kl,s expression was implemented in the Campbell relative water permeability model to yield a predictive model for water permeability in variably saturated, undisturbed soil. The water permeability model, together with recently developed predictive equations for gas permeability and gas diffusivity, was used in a two-dimensional numerical SVE model that also included non-equilibrium mass transfer of VOC from a separate phase (nonaqueous phase liquid [NAPL]) to the air phase. SVE: calculations showed that gas permeability is likely the most important factor controlling VOC migration and vapor extraction efficiency. Water permeability and gas diffusivity effects became significant at water contents near and above field capacity. The NAPL-air mass transfer coefficient also had large impacts on simulated vapor extraction efficiency. The calculations suggest that realistic SVE models need to include predictive expressions for both conveciive, diffusive. and phase-partitioning processes in natural, undisturbed soils.  相似文献   
43.
Bioassesment by the use of the macroalga, Ulva lactuca L., was carried out in the Limfjord, Denmark, to assess the significance of nitrogen and phosphorus as limiting factors for primary production during 1985, 1993, 1994 and 1995 and for the detection of changes in eutrophication levels.

Minimum and critical tissue concentrations for nitrogen and phosphorus in macroalgae were identified. The concentrations of nitrogen were generally below the critical concentration level in June–October in 1985, 1993, and 1995 but in 1994 nitrogen was only limiting for primary production in short periods. Only in early spring in 1985 and 1993 were the tissue concentrations of phosphorus below the critical concentration level, whereas in 1994 up to 3–4 months showed phosphorus limited growth, indicating that significant changes in limitation patterns can occur between different years.

It was concluded that the use of biomonitoring techniques is well suited as a bioassessment method for direct detection and for providing a time-integrated measure of nutrient availability in coastal waters, and thus for assessing ecosystem health with regard to eutrophication. It is recommended that biomonitors and the concept of critical tissue concentrations should be used in environmental management and incorporated in future monitoring programmes.  相似文献   

44.
The laboratory characterization of a field-operable surface-enhanced Raman scattering sensor (SERS optode) is presented for the detection of aromatic hydrocarbons in seawater. The sensor has been developed for deployment with a robust underwater spectrograph. To meet the demands of the harsh seawater application, sol-gel derived SERS substrates were used. The calibration curves of six PAHs were determined to be of Langmuir adsorption isotherm type with limits of detection ranging from the microg l(-1) to ng l(-1) level. The experimentally determined adsorption constants varied strongly with the molecular weight of the analytes and correlated with their solubility. A mixture of five PAHs dissolved in seawater was investigated to demonstrate the utility of this method for screening. Emphasis was put on the interference from suspended particulate matter (SPM). The Raman measurement with backscattering configuration was shown to be immune against turbidities up to 1000 NTU. The physico-chemical interference arising from adsorption by the sediment was measured on-line by adding sediment to a PAH-spiked solution. According to the calibration curve, the PAH concentration decrease corresponded to more than 98% of the analyte being scavenged by the sediment.  相似文献   
45.
The redistribution of air masses induces gravity variations (atmospheric pressure effect) up to about 20 μgal. These variations are disturbing signals in gravity records and they must be removed very carefully for detecting weak gravity signals. In the past, different methods have been developed for modelling of the atmospheric pressure effect. These methods use local or two-dimensional (2D) surface atmospheric pressure data and a standard height-dependent air density distribution. The atmospheric pressure effect is consisting of the elastic deformation and attraction term. The deformation term can be well modelled with 2D surface atmospheric pressure data, for instance with the Green's function method. For modelling of the attraction term, three-dimensional (3D) data are required. Results with 2D data are insufficient.From European Centre for Medium-Range Weather Forecasts (ECMWF) 3D atmospheric pressure data are now available. The ECMWF data used here are characterised by a spacing of Δ and Δλ = 0.5°, 60 pressure levels up to a height of 60 km and an interval of 6 h. These data are used for modelling of the atmospheric attraction term. Two attraction models have been developed based on the point mass attraction of air segments and the gravity potential of the air masses. The modelling shows a surface pressure-independent part of gravity variations induced by mass redistribution of the atmosphere in the order of some μgal. This part can only be determined by using 3D atmospheric pressure data. It has been calculated for the Vienna Superconducting Gravimeter site.From this follows that the gravity reduction can be improved by applying the 3D atmospheric attraction model for analysing long-periodic tidal waves including the polar tide. The same improvement is expected for reduction of long-term absolute gravity measurements or comparison of gravity measurements at different seasonal times. By using 3D atmospheric pressure data, the gravity correction can be improved up to some μgal.  相似文献   
46.
A fixed link (tunnel and bridge, in total 16 km) was constructed between Sweden and Denmark during 1995-2000. As part of the work, approximately 16 million tonnes of seabed materials (limestone and clay till) were dredged, and about 0.6 million tonnes of these were spilled in the water. Modelling of the spreading and sedimentation of the spilled sediments took place as part of the environmental monitoring of the construction activities. In order to verify the results of the numerical modelling of sediment spreading and sedimentation, a new method with the purpose of distinguishing between the spilled sediments and the naturally occurring sediments was developed. Because the spilled sediments tend to accumulate at the seabed in areas with natural sediments of the same size, it is difficult to separate these based purely on the physical properties. The new method is based on the geo-chemical differences between the natural sediment in the area and the spill. The basic propertiesused are the higher content of calcium carbonate material in the spill as compared to the natural sediments and the higher Ca/Sr ratio in the spill compared to shell fragments dominating the natural calcium carbonate deposition in the area. The reason for these differences is that carbonate derived from recent shell debris can be discriminated from Danien limestone, which is the material in which the majority of the dredging took place, on the basis of the Ca/Sr ratio being 488 in Danien Limestone and 237 in shell debris. The geochemical recognition of the origin of the sediments proved useful in separating the spilled from the naturally occurring sediments. Without this separation, validation of the modelling of accumulation of spilled sediments would not have been possible. The method has general validity and can be used in many situations where the origin of a given sediment is sought.  相似文献   
47.
Lateral movements of alluvial river channels control the extent and reworking rates of alluvial fans, floodplains, deltas, and alluvial sections of bedrock rivers. These lateral movements can occur by gradual channel migration or by sudden changes in channel position (avulsions). Whereas models exist for rates of river avulsion, we lack a detailed understanding of the rates of lateral channel migration on the scale of a channel belt. In a two-step process, we develop here an expression for the lateral migration rate of braided channel systems in coarse, non-cohesive sediment. On the basis of photographic and topographic data from laboratory experiments of braided channels performed under constant external boundary conditions, we first explore the impact of autogenic variations of the channel-system geometry (i.e. channel-bank heights, water depths, channel-system width, and channel slope) on channel-migration rates. In agreement with theoretical expectations, we find that, under such constant boundary conditions, the laterally reworked volume of sediment is constant and lateral channel-migration rates scale inversely with the channel-bank height. Furthermore, when channel-bank heights are accounted for, lateral migration rates are independent of the remaining channel geometry parameters. These constraints allow us, in a second step, to derive two alternative expressions for lateral channel-migration rates under different boundary conditions using dimensional analysis. Fits of a compilation of laboratory experiments to these expressions suggest that, for a given channel bank-height, migration rates are strongly sensitive to water discharges and more weakly sensitive to sediment discharges. In addition, external perturbations, such as changes in sediment and water discharges or base level fall, can indirectly affect lateral channel-migration rates by modulating channel-bank heights. © 2019 The Author. Earth Surface Processes and Landforms published by John Wiley & Sons, Ltd. © 2019 The Author. Earth Surface Processes and Landforms published by John Wiley & Sons, Ltd.  相似文献   
48.
Part one of this paper reported results from experimental compaction measurements of unconsolidated natural sand samples with different mineralogical compositions and textures. The experimental setup was designed with several cycles of stress loading and unloading applied to the samples. The setup was aimed to simulate a stress condition where sediments underwent episodes of compaction, uplift and erosion. P-wave and S-wave velocities and corresponding petrophysical (porosity and density) properties were reported. In this second part of the paper, rock physics modelling utilizing existing rock physics models to evaluate the model validity for measured data from part one were presented. The results show that a friable sand model, which was established for normally compacted sediments is also capable of describing overconsolidated sediments. The velocity–porosity data plotted along the friable sand lines not only describe sorting deterioration, as has been traditionally explained by other studies, but also variations in pre-consolidation stress or degree of stress release. The deviation of the overconsolidated sands away from the normal compaction trend on the VP/VS and acoustic impedance space shows that various stress paths can be predicted on this domain when utilizing rock physics templates. Fluid saturation sensitivity is found to be lower in overconsolidated sands compared to normally consolidated sands. The sensitivity decreases with increasing pre-consolidation stress. This means detectability for four-dimensional fluid saturation changes can be affected if sediments were pre-stressed and unloaded. Well log data from the Barents Sea show similar patterns to the experimental sand data. The findings allow the development of better rock physics diagnostics of unloaded sediments, and the understanding of expected 4D seismic response during time-lapse seismic monitoring of uplifted basins. The studied outcomes also reveal an insight into the friable sand model that its diagnostic value is not only for describing sorting microtextures, but also pre-consolidation stress history. The outcome extends the model application for pre-consolidation stress estimation, for any unconsolidated sands experiencing similar unloading stress conditions to this study.  相似文献   
49.
50.
In-situ sensors for riverine water quality monitoring are a powerful tool to describe temporal variations when efficient and informative analyses are applied to the large quantities of data collected. Concentration-discharge hysteresis patterns observed during storm events give insights into headwater catchment processes. However, the applicability of this approach to larger catchments is less well known. Here, we evaluate the potential for high-frequency turbidity-discharge (Q) hysteresis patterns to give insights into processes operating in a meso-scale (722 km2) northern mixed land use catchment. As existing event identification methods did not work, we developed a new, objective method based on hydrograph characteristics and identified 76 events for further analysis. Qualitative event analysis identified three recurring patterns. Events with low mean Q (≤ 2 m3/s) often showed short-term, quasi-periodic turbidity variation, to a large extent disconnected from Q variation. High max Q events (≥15 m3/s) were often associated with spring flood or snowmelt, and showed a disconnection between turbidity and Q. Intermediate Q events (mean Q: 2–11 m3/s) were the most informative when applying hysteresis indexes, since changes in turbidity and Q were actually connected. Hysteresis indexes could be calculated on a subset of 60 events, which showed heterogeneous responses: 38% had a clockwise response, 12% anticlockwise, 12% figure eight (clockwise–anticlockwise), 10% reverse figure eight (anticlockwise–clockwise) and 28% showed a complex response. Clockwise hysteresis responses were associated with the wetter winter and spring seasons. Generally, changes in Q and turbidity were small during anticlockwise hysteresis events. Precipitation often influenced figure-eight patterns, while complex patterns often occurred during summer low flows. Analysis of intermediate Q events can improve process understanding of meso-scale catchments and possibly aid in choosing appropriate management actions for targeting a specific observed pattern.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号