首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1008篇
  免费   40篇
  国内免费   4篇
测绘学   27篇
大气科学   63篇
地球物理   224篇
地质学   316篇
海洋学   109篇
天文学   124篇
综合类   2篇
自然地理   187篇
  2022年   5篇
  2021年   15篇
  2020年   21篇
  2019年   27篇
  2018年   35篇
  2017年   40篇
  2016年   40篇
  2015年   29篇
  2014年   46篇
  2013年   49篇
  2012年   51篇
  2011年   84篇
  2010年   50篇
  2009年   50篇
  2008年   53篇
  2007年   48篇
  2006年   47篇
  2005年   38篇
  2004年   43篇
  2003年   35篇
  2002年   25篇
  2001年   13篇
  2000年   17篇
  1999年   23篇
  1998年   11篇
  1997年   10篇
  1996年   7篇
  1995年   9篇
  1994年   8篇
  1993年   7篇
  1992年   9篇
  1990年   6篇
  1989年   5篇
  1988年   9篇
  1987年   3篇
  1986年   6篇
  1984年   5篇
  1983年   5篇
  1982年   4篇
  1981年   6篇
  1980年   5篇
  1979年   3篇
  1978年   5篇
  1977年   3篇
  1976年   4篇
  1975年   4篇
  1974年   8篇
  1973年   3篇
  1972年   3篇
  1971年   6篇
排序方式: 共有1052条查询结果,搜索用时 15 毫秒
111.
Saline alkaline lakes that precipitate sodium carbonate evaporites are most common in volcanic terrains in semi‐arid environments. Processes that lead to trona precipitation are poorly understood compared to those in sulphate‐dominated and chloride‐dominated lake brines. Nasikie Engida (Little Magadi) in the southern Kenya Rift shows the initial stages of soda evaporite formation. This small shallow (<2 m deep; 7 km long) lake is recharged by alkaline hot springs and seasonal runoff but unlike neighbouring Lake Magadi is perennial. This study aims to understand modern sedimentary and geochemical processes in Nasikie Engida and to assess the importance of geothermal fluids in evaporite formation. Perennial hot‐spring inflow waters along the northern shoreline evaporate and become saturated with respect to nahcolite and trona, which precipitate in the southern part of the lake, up to 6 km from the hot springs. Nahcolite (NaHCO3) forms bladed crystals that nucleate on the lake floor. Trona (Na2CO3·NaHCO3·2H2O) precipitates from more concentrated brines as rafts and as bottom‐nucleated shrubs of acicular crystals that coalesce laterally to form bedded trona. Many processes modify the fluid composition as it evolves. Silica is removed as gels and by early diagenetic reactions and diatoms. Sulphate is depleted by bacterial reduction. Potassium and chloride, of moderate concentration, remain conservative in the brine. Clastic sedimentation is relatively minor because of the predominant hydrothermal inflow. Nahcolite precipitates when and where pCO2 is high, notably near sublacustrine spring discharge. Results from Nasikie Engida show that hot spring discharge has maintained the lake for at least 2 kyr, and that the evaporite formation is strongly influenced by local discharge of carbon dioxide. Brine evolution and evaporite deposition at Nasikie Engida help to explain conditions under which ancient sodium carbonate evaporites formed, including those in other East African rift basins, the Eocene Green River Formation (western USA), and elsewhere.  相似文献   
112.
Medium-term prediction of sediment transport and morphological behaviour in the coastal zone is becoming increasingly important as a result of human interference and changing environmental conditions. The interaction of waves and tides is shown to play a pivotal role in the net (annual) sediment transport and morphodynamics of the coastal zone. The Telemac Modelling System has been applied to the Dyfi Estuary and neighbouring coastline, mid Wales, to recreate the annual wave–current conditions and the resulting sediment fluxes. ‘Input reduction’ methods have been required to produce realistic schematisations of events in practical computation times. A field campaign carried out in 2006 provided data for validation of the flow module (Telemac-2D) and also observations to verify the patterns predicted by the wave module (Tomawac). To improve model accuracy refinements were implemented with regard to the sand transport formulation used in the sand transport module (Sisyphe). Here, a parameterisation of the results from the UWB 1DV sand transport ‘research’ model, for the conditions in the Dyfi Estuary, has been introduced, allowing Sisyphe to provide greater realism in the morphological predictions. The model predictions are presented along with a discussion of the success/failure and limitations of the modelling methods applied.  相似文献   
113.
114.
115.
116.
The relative importance of climate, forest fires and human population size on long‐term boreal forest composition were statistically investigated at regional and local scales in Fennoscandia. We employ pollen data from lakes, reflecting regional vegetation, and small forest hollows, reflecting local vegetation, from Russia, Finland and Sweden to reconstruct the long‐term forest composition. As potential drivers of the Holocene forest dynamics we consider climate, generated from a climate model and oxygen isotope data, past forest fires generated from sedimentary charcoal data and human population size derived from radiocarbon dated archaeological findings. We apply the statistical method of variation partitioning to assess the relative importance of these environmental variables on long‐term boreal forest composition. The results show that climate is the main driver of the changes in Holocene boreal forest composition at the regional scale. However, at the local scale the role of climate is relatively small. In general, the importance of forest fires is low both at regional and local scales. The fact that both climate and forest fires explain relatively small proportions of variation in long‐term boreal vegetation in small forest hollow records demonstrates the complexity of factors affecting stand‐scale forest dynamics. The relative importance of human population size was low in both the prehistorical and the historical time periods. However, this is the first time that this type of data has been used to statistically assess the importance of human population size on boreal vegetation and the spatial representativeness of the data may cause bias to the analysis.  相似文献   
117.
The vertical flux of particulate matter from the surface of the Ross Sea, Antarctica, has been suggested as being large, with substantial seasonal and spatial variations. We conducted a study in which vertical flux was quantified using sediment traps deployed at 200 m and compared to estimates calculated from one-dimensional budgets of nutrients (nitrogen and silicon). Estimates of flux were collected at two locations in the southern Ross Sea from late December to early February during four years: 2001-2002, 2003-2004, 2004-2005, and 2005-2006. Phytoplankton biomass and vertical flux varied substantially seasonally and spatially between the two sites, and among years. The greatest flux was observed in 2001-2002, with a short-term maximum organic carbon flux of 3.13 mmol m−2 d−1, and the summer mean organic carbon flux equal to 0.93 mmol m−2 d−1. In contrast, the mean carbon flux at the same site in 2003-2004 was over an order of magnitude less, averaging 0.19 mmol m−2 d−1, despite the fact that productivity in that year was substantially greater. In 2005-206 the contribution of fecal pellets to flux was smallest among all years, and the pellet contribution ranged from <1 to more than 50% of organic flux. As the moorings also had surface layer fluorometers, the relationship between surface biomass and sediment trap flux was compared. Temporal lags between surface fluorescence and flux at 200 m maxima in 2003-2004 and 2004-2005 ranged from two to six days; however, in 2005-2006 the temporal offset between biomass and flux was much longer, ranging from 11 to 27 days, suggesting that fecal pellet production appeared to increase the coupling between flux and surface production. Estimates of export from the upper 200 m based on one-dimensional nutrient budgets were greater than those recorded by the sediment traps. Nutrient budgets also indicated that siliceous production averaged ca. 40% of the total annual production. The variations observed in the flux of biogenic matter to depth in the Ross Sea are large, appear to reflect different forcing among years, and at present are not adequately understood. However, such variability needs to be both understood and represented in biogeochemical models to accurately assess and predict the effects of climate change on biogeochemical cycles.  相似文献   
118.
119.
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号