首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1327篇
  免费   68篇
  国内免费   8篇
测绘学   23篇
大气科学   78篇
地球物理   366篇
地质学   439篇
海洋学   135篇
天文学   235篇
综合类   8篇
自然地理   119篇
  2021年   17篇
  2020年   24篇
  2019年   24篇
  2018年   26篇
  2017年   31篇
  2016年   36篇
  2015年   35篇
  2014年   38篇
  2013年   71篇
  2012年   49篇
  2011年   66篇
  2010年   72篇
  2009年   68篇
  2008年   82篇
  2007年   54篇
  2006年   61篇
  2005年   51篇
  2004年   41篇
  2003年   54篇
  2002年   60篇
  2001年   24篇
  2000年   19篇
  1999年   19篇
  1998年   20篇
  1997年   21篇
  1996年   20篇
  1995年   17篇
  1994年   17篇
  1993年   22篇
  1992年   10篇
  1991年   8篇
  1990年   11篇
  1989年   12篇
  1988年   8篇
  1987年   14篇
  1986年   8篇
  1985年   19篇
  1984年   20篇
  1983年   16篇
  1982年   16篇
  1981年   18篇
  1980年   13篇
  1979年   8篇
  1978年   16篇
  1977年   9篇
  1976年   6篇
  1975年   8篇
  1974年   9篇
  1973年   10篇
  1970年   6篇
排序方式: 共有1403条查询结果,搜索用时 328 毫秒
971.
During the 20th century the northeastern U.S.A. has undergone an annual temperature increase of 1 °C, the combined effect of winter warming and an increase in daily summer minimum temperatures. A significant cooling of spring through autumn in maximum air temperatures is also evident since 1950. Therefore, the primary objective of this study is to document these climate trends and variability over the last century. A secondary objective is to provide a preliminary analysis of how these changes may have impacted hydrologic and ecosystem processes. Specifically, with respect to ecosystem processes, we examine how the cooling of daytime maximum temperatures may have impacted plant respiration and biomass accumulation. The study site is the Black Rock Forest, an experimental forest located in Hudson Highlands of New York that has been maintained as a conservation area over the last 100 years. For the region centered about the forest, there exists a climate/weather record and an extensively maintained biomass record that extends continuously from the early part of the 20th century through present. With such an extensive physical and biological record to draw from, this forest provides a microcosm for studying how changes in 20th century local and regional climate may have impacted ecosystem processes such as species adaptation, biomass growth, and 20th century carbon sequestration. In a subsequent paper we will more extensively explore the relationship between this record of changing climate and eco-hydrological processes.  相似文献   
972.
Fluvial erosion processes are driven by water discharge on the land surface, which is produced by surface runoff and groundwater discharge. Although groundwater is often neglected in long‐term landscape evolution problems, water table levels control patterns of Dunne runoff production, and groundwater discharge can contribute significantly to storm flows. In this analysis, we investigate the role that groundwater movement plays in long‐term drainage basin evolution by modifying a widely used landscape evolution model to include a more detailed representation of basin hydrology. Precipitation is generated by a stochastic process, and the precipitation is partitioned between surface runoff and groundwater recharge using a specified infiltration capacity. Groundwater flow is simulated by a dynamic two‐dimensional Dupuit equation for an unconfined aquifer with an irregular underlying impervious layer. The model is applied to the WE‐38 basin, an experimental catchment in Pennsylvania, because 60–80 per cent of the discharge is derived from groundwater and substantial hydrologic and geomorphic information is available. The hydrologic model is first calibrated to match the observed streamflows, and then the combined hydrologic/geomorphic model is used to simulate scenarios with different infiltration capacities. The results of this modelling exercise indicate that the basin can be divided into three zones with distinct streamflow‐generating characteristics, and different parts of the basin can have different geomorphic effective events. Over long periods of time, scenarios in which groundwater discharge is large tend to modify the topography in a way that promotes groundwater discharge and inhibits Dunne runoff. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
973.
This paper discusses the resolution of geometrical characteristics of pressurized fractures from tiltmeter data. The quasi-static deformation and tilt field induced by such fractures can be modeled by superposition of displacement discontinuity (DD) singularities. Despite the relatively common use of such measurements to infer fracture characteristics, there is a widespread misunderstanding of what can be accurately determined, depending on the relative distance between the tiltmeter array and the fracture. We investigate in detail the resolution of the dimensions and orientation of hydraulic fractures or faults from tilt measurements. In particular, we formally prove that at a distance larger than about twice the characteristic length of the fracture, elastostatic measurements such as those measured by tiltmeters are not able to resolve independently all the dimensions of the fracture, although the fracture volume can be robustly inverted from the data. The resolution of fracture orientation is also discussed using an analysis based on a spatial Fourier Transform of the tilt field. The relative angle between the plane where the measurements are located and the fracture plane plays a major role in the accuracy of this estimation. In an illustrative field example, where the measurements are located in the far-field of the fracture deformation field, we show how a single DD singularity can be used to model tiltmeter data and efficiently obtain the fracture orientation and volume.  相似文献   
974.
We present new Raman spectra data of carbonaceous material (CM) to extend the range of the Raman spectra of CM thermometer (RSCM) to temperatures as low as 100 °C. Previous work has demonstrated that Raman spectroscopy is an excellent tool to describe the degree of graphitization of CM, a process that is independent of pressure but strongly dependent on metamorphic temperature. A linear relationship between temperature and the Raman parameter R2 (derived from the area of the defect band relative to the ordered graphite band) forms the basis of a previous thermometer. Because R2 shows little variability in low-temperature samples, 330 °C serves as a lower limit on the existing thermometer. Herein, we present Raman spectra from a suite of low-temperature (100 to 300 °C) samples from the Olympics Mountains and describe other aspects of the Raman spectra of CM that vary over this range. In particular, the Raman parameter R1 (the ratio of heights of the disordered peak to ordered peak) varies regularly between 100 and 350 °C. These data, together with published results from higher-temperature rocks, are used to calibrate a modified RSCM thermometer, applicable from 100 to 700 °C. Application to low-grade metasediments in the Otago region in the South Island of New Zealand gives temperatures consistent with previous estimates, demonstrating the reliability of the modified RSCM thermometer.We apply the modified RSCM thermometer to 53 samples from Crete to evaluate the role of the Cretan detachment fault in exhuming Miocene high pressure/low-temperature metamorphic rocks exposed there. The metamorphic rocks below the detachment (the Plattenkalk and Phyllite-Quartzite units) give metamorphic temperatures that range from 250 to 400 °C, consistent with previous petrologic estimates. We also demonstrate that the Tripolitza unit, which lies directly above the detachment, gives an average metamorphic temperature of about 260 °C. The modest break in metamorphic temperature in central Crete indicates that the Cretan detachment accounts for only 5 to 7 km of exhumation of the underlying HP-LT metamorphic rocks, which were initially accreted at ∼ 35 km. We argue that the bulk of the exhumation (∼ 28 km out of 35 km total) occurred by pervasive brittle stretching and erosion of structural units above the detachment.  相似文献   
975.
976.
The Monte Ollasteddu deposit represents a major gold discovery in the Variscan basement of southeastern Sardinia. Gold occurs in late-Variscan extensional brittle structures hosted by meta-volcanic, and subordinately meta-sedimentary, rocks. The vein mineralogy is dominated by quartz; arsenopyrite is the main sulphide. Reconnaissance 40Ar–39Ar dating gives ages around ∼260 Ma on K-feldspar from mineralized veins, whereas metamorphic white mica from the host rock gives ages clustering at ∼307 Ma. The best age estimate for biotite from a nearby leucogranite body is 286.3±2.2 Ma. The Pb isotope signature of ore and gangue minerals is entirely consistent with literature data for Variscan deposits of Sardinia, and for European Variscan gold deposits. Fluid inclusion data point to the presence of both CO2-bearing and CO2-free fluids, with homogenization temperatures ranging from 220 to 415°C, with low-to-moderate salinities (0.4–6.2 wt% NaCl equivalent). Monte Ollasteddu shows several features similar to European Variscan gold deposits; however, the age of mineralization might post-date granitoid intrusion by as much as 30 Ma, being instead coeval with very late calc-alkaline basaltic dykes, marking the transition to a post-orogenic, pre-Tethyan geodynamic setting. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   
977.
With pending regulation of mercury emissions in United States power plants, its control at every step of the combustion process is important. An understanding of the amount of mercury in coal at the mine is the first step in this process. The Springfield coal (Middle Pennsylvanian) is one of the most important coal resources in the Illinois Basin. In Indiana and western Kentucky, Hg contents range from 0.02 to 0.55 ppm. The variation within small areas is comparable to the variation on a basin basis. Considerable variation also exists within the coal column, ranging from 0.04 to 0.224 ppm at one Kentucky site. Larger variations likely exist, since that site does not represent the highest whole-seam Hg nor was the collection of samples done with optimization of trace element variations in mind. Estimates of Hg capture by currently installed pollution control equipment range from 9–53% capture by cold-side electrostatic precipitators (ESP) and 47–81% Hg capture for ESP + flue-gas desulfurization (FGD). The high Cl content of many Illinois basin coals and the installation of Selective Catalytic Reduction of NOx enhances the oxidation of Hg species, improving the ability of ESPs and FGDs to capture Hg.  相似文献   
978.
Three soil profiles taken from the Hartwood Research Station in Central Scotland have been analyzed using chemical digestion and extraction techniques to investigate the chemical association of heavy metals deposited from the atmosphere. Total digestion, EDTA extraction and the BCR (Bureau Communitaire de Reference) sequential extraction procedure were used. In addition, lead isotope ratios in the whole soils and in the fractions from the sequential extraction procedure were measured using thermal ionisation mass spectrometry. All the digestion and extraction procedures gave clear indication of enhanced concentrations of heavy metals in surface soils, in particular for lead and zinc. Whereas total digestion gave a good indication of the heavy metal status of the soils, the extraction procedures were necessary to provide information on chemical association of the metals with soil components, information needed to understand the soil processes involved in mobilization of metals. Lead isotope analysis of the whole soils revealed a consistent picture of lower 206Pb/207Pb ratios in surface soils (1.140-1.147) than in soils at 20-30 cm depth (1.182-1.190). The steady progression from the lower to higher ratios down the profile was clear indication that anthropogenic lead had penetrated to some degree into the deeper soils. The combination of sequential extraction and lead isotope analysis proved to be a powerful approach to studying this effect in more detail and showed that the fractions extractable from 20 to 30 cm soils contained lead with much lower 206Pb/207Pb ratios (1.174-1.178) than the residual fraction (1.196-1.200). As the extractable fractions contained ≥85% of the lead in the soil, a substantial portion of lead at 20-30 cm depth was of anthropogenic origin. The 206Pb/207Pb ratios of 1.174-1.178 found in the extractable fractions suggested that the mobile component of the anthropogenic lead was that deposited before the introduction of leaded petrol.  相似文献   
979.
The North Slope foreland basin, Alaska, USA is an east–west asymmetrical trough‐shaped basin adjacent to the Brooks Range fold‐thrust mountain belt. Lower Cretaceous age rocks make up much of the sediment fill, including flysch‐like marine turbidites and shales of the Torok and Fortress Mountain formations and marine and sandstones, shales and conglomerates of the overlying Nanushuk group. Lower Cretaceous age rocks were deposited on top of a Palaeozoic and Mesozoic age passive margin sequence. We have conducted numerical simulations of fluid flow driven by topographic recharge in the Central North Slope foreland basin. These simulations are constrained by salinity estimates from well logs, location of oil and gas fields, vitrinite reflectance and heat flow measurements. Our model results indicate that there are two south to north pathways for fluid migration. The primary pathway for fluid movement is downward through the Fortress Mountain formation, then upwards along the interface between the Fortress Mountain and Torok Formation and finally northward through the permeable Nanushuk group. A smaller mass of groundwater moves along sands below the Torok formation and into offshore sediments north of Alaska. Very little meteoric water enters the underlying Palaeozoic rocks in our simulations, which could explain the presence of deep saline pore waters. Our results also show that permafrost is a primary control on the pathway and rate of fluid flow by controlling the distribution of surface recharge and discharge. For example, areas of high heat flow and low saline waters along the arctic coast may represent upward groundwater discharge because of the absence of permafrost. As surface temperatures were warmer in the Miocene, the absence of permafrost would produce a more local fluid circulation pattern and less transfer of heat energy from south to north.  相似文献   
980.
Hunting for oceanic island Moho   总被引:2,自引:0,他引:2  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号