首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   288篇
  免费   16篇
  国内免费   8篇
测绘学   5篇
大气科学   29篇
地球物理   111篇
地质学   94篇
海洋学   23篇
天文学   25篇
综合类   2篇
自然地理   23篇
  2023年   2篇
  2021年   3篇
  2020年   6篇
  2019年   3篇
  2018年   13篇
  2017年   8篇
  2016年   10篇
  2015年   10篇
  2014年   13篇
  2013年   32篇
  2012年   16篇
  2011年   18篇
  2010年   18篇
  2009年   11篇
  2008年   13篇
  2007年   10篇
  2006年   17篇
  2005年   17篇
  2004年   13篇
  2003年   12篇
  2002年   8篇
  2001年   8篇
  2000年   9篇
  1999年   4篇
  1998年   8篇
  1997年   3篇
  1995年   5篇
  1994年   4篇
  1993年   2篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1982年   2篇
  1981年   3篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有312条查询结果,搜索用时 31 毫秒
71.
Accurate analysis of water flow pathways from rainfall to streams is critical for simulating water use, climate change impact, and contaminants transport. In this study, we developed a new scheme to simultaneously calibrate surface flow (SF) and baseflow (BF) simulations of soil and water assessment tool (SWAT) by combing evolutionary multi‐objective optimization (EMO) and BF separation techniques. The application of this scheme demonstrated pronounced trade‐off of SWAT's performance on SF and BF simulations. The simulated major water fluxes and storages variables (e.g. soil moisture, evapotranspiration, and groundwater) using the multiple parameters from EMO span wide ranges. Uncertainty analysis was conducted by Bayesian model averaging of the Pareto optimal solutions. The 90% confidence interval (CI) estimated using all streamflows substantially overestimate the uncertainty of low flows on BF days while underestimating the uncertainty of high flows on SF days. Despite using statistical criteria calculated based on streamflow for model selection, it is important to conduct diagnostic analysis of the agreement of SWAT behaviour and actual watershed dynamics. The new calibration technique can serve as a useful tool to explore the trade‐off between SF and BF simulations and provide candidates for further diagnostic assessment and model identification. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
72.
Large-scale flood modelling approaches designed for regional to continental scales usually rely on relatively simple assumptions to represent the potentially highly complex river bathymetry at the watershed scale based on digital elevation models (DEMs) with a resolution in the range of 25–30 m. Here, high-resolution (1 m) LiDAR DEMs are employed to present a novel large-scale methodology using a more realistic estimation of bathymetry based on hydrogeomorphological GIS tools to extract water surface slope. The large-scale 1D/2D flood model LISFLOOD-FP is applied to validate the simulated flood levels using detailed water level data in four different watersheds in Quebec (Canada), including continuous profiles over extensive distances measured with the HydroBall technology. A GIS-automated procedure allows to obtain the average width required to run LISFLOOD-FP. The GIS-automated procedure to estimate bathymetry from LiDAR water surface data uses a hydraulic inverse problem based on discharge at the time of acquisition of LiDAR data. A tiling approach, allowing several small independent hydraulic simulations to cover an entire watershed, greatly improves processing time to simulate large watersheds with a 10-m resampled LiDAR DEM. Results show significant improvements to large-scale flood modelling at the watershed scale with standard deviation in the range of 0.30 m and an average fit of around 90%. The main advantage of the proposed approach is to avoid the need to collect expensive bathymetry data to efficiently and accurately simulate flood levels over extensive areas.  相似文献   
73.
Marinas are areas of special water quality concern because of the potential for pollutant accumulation within their protected waters. Perhaps the largest contaminant source to marinas is antifouling paints that leach copper to prevent the growth of encrusting organisms on vessel bottoms. Very little monitoring of marinas is typically conducted despite the potential environmental risk, particularly in the San Diego region of California, USA where as many as 17,000 recreational vessels are berthed. The objective of this study was twofold: (1) determine the extent and magnitude of dissolved copper concentrations in marinas throughout the San Diego region, and (2) determine if elevated copper concentrations in marinas of the San Diego region are resulting in adverse biological impacts. A probabilistic study design was used to sample water column copper concentrations and toxicity (using Mytilus galloprovincialis) at 30 stations. Results indicated that exceedence of state water quality objectives was widespread (86% of marina area), but that toxicity was much less prevalent (21% of marina area). Toxicity identification evaluations (TIEs) conducted at the most toxic sites indicated that toxicity was largely due to trace metals, most likely copper. Toxicity was reduced using TIE treatments that chelated trace metals such as cation exchange column, ethylenediaminetetraacetic acid (EDTA), and sodium thiosulfate (STS). Moreover, increasing dissolved copper concentrations correlated with increasing toxicity and these copper concentrations were high enough to account for virtually all of the observed toxicity.  相似文献   
74.
Local in its causes and global in its impacts, climate change still poses an unresolved challenge for scientists, politicians, entrepreneurs, and citizens. Climate change research is largely global in focus, aims at enhanced understanding, and is driven by experts, all of which seem to be insufficient to anchor climate change action in regional and local contexts. We present results from a participatory scenario study conducted in collaboration with the municipality of Delta in SW British Columbia, Canada. This study applies a participatory capacity building approach for climate change action at the local level where the sources of emissions and the mechanisms of adaptation reside and where climate change is meaningful to decision-makers and stakeholders alike. The multi-scale scenario approach consists of synthesizing global climate change scenarios, downscaling them to the regional and local level, and finally visualizing alternative climate scenarios out to 2100 in 3D views of familiar, local places. We critically discuss the scenarios produced and the strengths and weaknesses of the approach applied.  相似文献   
75.
Jeff Garmany 《Geoforum》2010,41(6):908-918
In this paper I argue that geographies of religion are fundamental to understanding governance and social order in contemporary urban space. More specifically, I show how Foucault’s notion of governmentality characterizes regimes of power beyond the state apparatus, positing that religion and churches also produce and maintain the knowledges, truths, and social order associated with governmentality and self-regulated governance. By considering the geography of religion literature within the context of Foucualt’s work, I illustrate the importance of religious and spiritual practices to contemporary urban space, and the roles they play in producing and maintaining governance and socio-political order. My purpose is not to suggest that governmentality has been misapplied as a theoretical tool for understanding the state and political power, but to show how the term actually describes power more generally, including spiritual moments in addition to political ones. Drawing from my case study in Fortaleza, Brazil, I substantiate my theoretical argument using empirical examples, showing how governmentality is produced through religion and churches and the relationship between spiritual practices and governance in everyday space.  相似文献   
76.
The design of stormwater infrastructure is based on an underlying assumption that the probability distribution of precipitation extremes is statistically stationary. This assumption is called into question by climate change, resulting in uncertainty about the future performance of systems constructed under this paradigm. We therefore examined both historical precipitation records and simulations of future rainfall to evaluate past and prospective changes in the probability distributions of precipitation extremes across Washington State. Our historical analyses were based on hourly precipitation records for the time period 1949–2007 from weather stations in and near the state’s three major metropolitan areas: the Puget Sound region, Vancouver (WA), and Spokane. Changes in future precipitation were evaluated using two runs of the Weather Research and Forecast (WRF) regional climate model (RCM) for the time periods 1970–2000 and 2020–2050, dynamically downscaled from the ECHAM5 and CCSM3 global climate models. Bias-corrected and statistically downscaled hourly precipitation sequences were then used as input to the HSPF hydrologic model to simulate streamflow in two urban watersheds in central Puget Sound. Few statistically significant changes were observed in the historical records, with the possible exception of the Puget Sound region. Although RCM simulations generally predict increases in extreme rainfall magnitudes, the range of these projections is too large at present to provide a basis for engineering design, and can only be narrowed through consideration of a larger sample of simulated climate data. Nonetheless, the evidence suggests that drainage infrastructure designed using mid-20th century rainfall records may be subject to a future rainfall regime that differs from current design standards.  相似文献   
77.
Understanding the historical and future response of the global climate system to anthropogenic emissions of radiatively active atmospheric constituents has become a timely and compelling concern. At present, however, there are uncertainties in: the total radiative forcing associated with changes in the chemical composition of the atmosphere; the effective forcing applied to the climate system resulting from a (temporary) reduction via ocean-heat uptake; and the strength of the climate feedbacks that subsequently modify this forcing. Here a set of analyses derived from atmospheric general circulation model simulations are used to estimate the effective and total radiative forcing of the observed climate system due to anthropogenic emissions over the last 50 years of the twentieth century. They are also used to estimate the sensitivity of the observed climate system to these emissions, as well as the expected change in global surface temperatures once the climate system returns to radiative equilibrium. Results indicate that estimates of the effective radiative forcing and total radiative forcing associated with historical anthropogenic emissions differ across models. In addition estimates of the historical sensitivity of the climate to these emissions differ across models. However, results suggest that the variations in climate sensitivity and total climate forcing are not independent, and that the two vary inversely with respect to one another. As such, expected equilibrium temperature changes, which are given by the product of the total radiative forcing and the climate sensitivity, are relatively constant between models, particularly in comparison to results in which the total radiative forcing is assumed constant. Implications of these results for projected future climate forcings and subsequent responses are also discussed.  相似文献   
78.
This paper assesses the mechanisms and pathways by which peat blocks are eroded and transported in upland fluvial systems. Observations and experiments from the north Pennines (UK) have been carried out on two contrasting river systems. Mapping of peat block distributions and appraisal of reach‐based sediment budgets clearly demonstrates that macro‐size peat is an important stream load component. In small streams block sizes can approximate the channel width and much of the peat is transported overbank. Local ‘peat jams’ and associated mineral deposition may provide an important component of channel storage. In larger systems peat blocks rapidly move down‐channel and undergo frequent exchanges between bed and bank storage. Results of peat block tracing using painted blocks indicate that once submerged, blocks of all sizes are easily transported and blocks break down rapidly by abrasion. Vegetation and bars play an important role in trapping mobile peat. In smaller streams large block transport is limited by channel jams. Smaller blocks are transported overbank but exhibit little evidence of downstream fining. In larger rivers peat blocks are more actively sorted and show downstream reduction in size from source. A simple model relating peat block diameter (Dp) to average flow depth (d) suggests three limiting transport conditions: flotation (Dp < d), rolling (d < Dp > d/2) and deposition (Dp > d/2). Experiments demonstrate that peat block transport occurs largely by rolling and floating and the transport mechanism is probably controlled by relative flow depth (d/Dp ratio). Transport velocity varies with transport mechanism (rolling is the slowest mode) and transport lengths increase as flow depth increases. Abrasion rates vary with the transport mechanism. Rolling produces greater abrasion rates and more rounded blocks. Abrasion rates vary from 0 to 10 g m?1 for blocks ranging in mass from 10 to 6000 g. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
79.
Liver sections of winter flounder (Pseudopleuronectes americanus) collected from Jamaica Bay and Shinnecock Bay, New York, in 1989, were examined microscopically to determine the pervasiveness of liver lesions observed previously in Jamaica Bay winter flounder. Neoplastic lesions were not detected in fish from Jamaica Bay or the Shinnecock Bay reference site. Twenty-two percent of Jamaica Bay winter flounder examined (n=103) had unusual vacuolization of hepatocytes and biliary pre-ductal and ductal cells (referred to hereafter as the vacuolated cell lesion). The lesion, identical to that found in 25% of Jamaica Bay winter flounder examined in 1988, has previously been identified in fishes taken from highly polluted regions of the Atlantic coast (e.g., Boston Harbor, Massachusetts, and Black Rock Harbor, Connecticut). Prevalence of the vacuolated cell lesion in winter flounder from Jamaica Bay was significantly greater (p<0.0001) than in 102 specimens collected from Shinnecock Bay. Current scientific literature indicates vacuolated hepatocytes and cholangiocytes are chronically injured and that the extent of their deformity is consistent with the action of a hepatotoxicant. The high prevalence of vacuolated hepatocytes in Jamaica Bay winter flounder and absence of the lesion in flounder from reference sites strongly supports the hypothesis that this impairment is a manifestation of a toxic condition in at least some portions of Jamaica Bay.  相似文献   
80.
Lunar sample 76535 is a coarse-grained troctolitic granulite exhibiting a texture indicative of long annealing times. It is composed of homogeneous crystals of plagioclase (58 per cent, An96), olivine (37 per cent, Fo88) and bronzite (4 per cent, En86).Chromian spinel-bronzite-diopside (Wo46En50Fs4) symplectic intergrowths commonly occur along olivine-plagioclase boundaries and as tiny inclusions within olivine grains. These symplectites apparently formed by a reaction of the type:
OI + An + Chromite → Opx + Cpx + Al-Mg-chromite
. The reaction is related to the experimentally determined reaction
OI + An = Opx + Cpx + Sp
of Kushiro and Yoder (1966). The enstatite content of the diopside coexisting with the bronzite indicates equilibration at about 1000°C. Thermodynamic calculations for 1000°C indicate that the symplectites formed at a minimum pressure of about 0.6 kb. Low alumina contents of the pyroxenes indicate equilibration near this minimum pressure.Clusters of the same assemblage found in the symplectic intergrowths, but containing accessory metal, troilite, Ca-phosphates, baddeleyite, plagioclase and/or K-feldspar occur sporadically throughout the rock. These apparent late stage products crystallized in the low temperature-high pressure region discussed above.Phase relations of co-existing metal phases indicate that the rock cooled at a few tens of degrees/my, corresponding to depths of 10–20 km below the lunar surface, in agreement with the above pressure estimate.We infer that 76535 represents an original cumulate deposited at a depth between about 10 and 30 km. The last liquid crystallized in the relatively high pressure-low temperature field opx + cpx + Al-Mg-chromite. Cooling was extremely slow and accompanied by extensive chemical and textural re-equilibration. Reaction to form the symplectites occurred during the late stages of re-equilibration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号