首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   276篇
  免费   14篇
  国内免费   8篇
测绘学   5篇
大气科学   29篇
地球物理   100篇
地质学   94篇
海洋学   23篇
天文学   22篇
综合类   2篇
自然地理   23篇
  2023年   2篇
  2021年   3篇
  2020年   5篇
  2019年   3篇
  2018年   12篇
  2017年   8篇
  2016年   10篇
  2015年   10篇
  2014年   11篇
  2013年   31篇
  2012年   16篇
  2011年   17篇
  2010年   18篇
  2009年   11篇
  2008年   12篇
  2007年   8篇
  2006年   17篇
  2005年   14篇
  2004年   13篇
  2003年   11篇
  2002年   8篇
  2001年   7篇
  2000年   9篇
  1999年   4篇
  1998年   8篇
  1997年   3篇
  1995年   5篇
  1994年   4篇
  1993年   2篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1982年   2篇
  1981年   3篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有298条查询结果,搜索用时 31 毫秒
121.
With a focus towards developing multiscale capabilities in numerical weather prediction models, the specific problem of the transition from the mesoscale to the microscale is investigated. For that purpose, idealized one-way nested mesoscale to large-eddy simulation (LES) experiments were carried out using the Weather Research and Forecasting model framework. It is demonstrated that switching from one-dimensional turbulent diffusion in the mesoscale model to three-dimensional LES mixing does not necessarily result in an instantaneous development of turbulence in the LES domain. On the contrary, very large fetches are needed for the natural transition to turbulence to occur. The computational burden imposed by these long fetches necessitates the development of methods to accelerate the generation of turbulence on a nested LES domain forced by a smooth mesoscale inflow. To that end, four new methods based upon finite amplitude perturbations of the potential temperature field along the LES inflow boundaries are developed, and investigated under convective conditions. Each method accelerated the development of turbulence within the LES domain, with two of the methods resulting in a rapid generation of production and inertial range energy content associated to microscales that is consistent with non-nested simulations using periodic boundary conditions. The cell perturbation approach, the simplest and most efficient of the best performing methods, was investigated further under neutral and stable conditions. Successful results were obtained in all the regimes, where satisfactory agreement of mean velocity, variances and turbulent fluxes, as well as velocity and temperature spectra, was achieved with reference non-nested simulations. In contrast, the non-perturbed LES solution exhibited important energy deficits associated to a delayed establishment of fully-developed turbulence. The cell perturbation method has negligible computational cost, significantly accelerates the generation of realistic turbulence, and requires minimal parameter tuning, with the necessary information relatable to mean inflow conditions provided by the mesoscale solution.  相似文献   
122.
In a diamond from New South Wales (Australia), cubic and octahedral growth sectors, as identified by cathodoluminescence (CL), show slight differences in N-contents of 29 and 42 ppm respectively but no significant differences in either δ13C, δ15N and nitrogen aggregation state with values at +1.96‰, +19.4‰, and 25% Type IaAB aggregation, respectively.Two gem cubes from the Orapa kimberlite (Botswana) were studied by CL revealing a nonfaceted cubic growth. Accordingly, nine other gem cubes were combusted and yielded δ13C-values from -5.33‰ to -6.63‰, δ15N from -1.0‰ to -5.5‰, and nitrogen contents from 914 to 1168 ppm, with nitrogen aggregation state being only Type IaA (zero % B). The gem cubes show striking similarities to fibrous/coated diamonds, not only in both δ13C ranges (less than 3‰ from -5 to -8‰), but also in the high levels of nitrogen (≈ 1000 ppm), suggesting that the two diamond types are related. Additionally, no δ15N variation was detected between the cube and octahedral growth sectors of the Australian diamond, in the cube sectors of the nine gem cubes from Botswana, nor in fibrous/coated diamonds previously studied. These analyses contrast with an earlier study on a synthetic diamond, which reported a strong kinetic fractionation of N-isotopes of about 40‰ between cube and octahedral growth. The present evidence, therefore, suggests that kinetic fractionation of N-isotopes does not operate during natural diamond formation.  相似文献   
123.
Experiments on compositions along the join MgO–NaA3+Si2O6 (A=Al, Cr, Fe3+) show that sodium can be incorporated into ferropericlase at upper mantle pressures in amounts commonly found in natural diamond inclusions. These results, combined with the observed mineral parageneses of several diamond inclusion suites, establish firmly that ferropericlase exists in the upper mantle in regions with low silica activity. Such regions may be carbonated dunite or stalled and degassed carbonatitic melts. Ferropericlase as an inclusion in diamond on its own is not indicative of a lower mantle origin or of a deep mantle plume. Coexisting phases have to be taken into consideration to decide on the depth of origin. The composition of olivine will indicate an origin from the upper mantle or border of the transition zone to the lower mantle and whether it coexisted with ferropericlase in the upper mantle or as ringwoodite. The narrow and flat three phase loop at the border transition zone—lower mantle together with hybrid peridotite plus eclogite/sediments provides an explanation for the varying and Fe-rich nature of the diamond inclusion suite from Sao Luiz, Brazil.  相似文献   
124.
Hyperpycnal flows are generated in the marine environment by sediment-laden fresh water discharge into the ocean. They frequently form at river mouths and are also generated in proximal ice-melting settings and are thought to be responsible for transporting a large proportion of suspended river sediment onto and off the continental shelf. Hyperpycnal flows are an example of gravity currents that display reversing buoyancy. This phenomenon is generated by the fresh water interstitial fluid being less dense than that of the ambient seawater. Thus after sufficient particles are sedimented the flow can become positively buoyant and loft, forming a rising plume. Here we present results from physical scale-modelling experiments of lofting gravity currents upon interaction with topography. Topography, in the form of a vertical obstacle, triggered a localised lofting zone on its upstream side. This lofting zone was maintained in a fixed position until the bulk density of the flow had reduced enough to allow lofting along its entire length. The obstructed lofting zone is associated with a sharp increase in deposit thickness. By inference these experimentally established lofting dynamics are applied to improve understanding of the potential for hyperpycnal flows to deposit deep-water massive sands. This study provides a depositional mechanism by which large volumes of sand can be deposited in the absence of traction and the fines removed, leaving thick deposits of structureless sand with a low percentage of mud. This conceptual model for the first time provides a framework by which the geometries of certain deep-water massive sands may be predicted within specific depositional and basinal settings. This is crucial to our understanding of massive sand deposits in modern and ancient turbiditic systems and in the commercial evaluation of hydrocarbon potential of such sedimentary successions.  相似文献   
125.
Analysis of cumulative human impacts in the marine environment is still in its infancy but developing rapidly. In this study, existing approaches were expanded upon, aiming for a realistic consideration of cumulative impacts at a regional scale. Thirty-eight human activities were considered, with each broken down according to stressor types and a range of spatial influences. To add to the policy relevance, existing stressors within and outside of conservation areas were compared. Results indicate the entire continental shelf of Canada's Pacific marine waters is affected by multiple human activities at some level. Commercial fishing, land-based activities and marine transportation accounted for 57.0%, 19.1%, and 17.7% of total cumulative impacts, respectively. Surprisingly, most areas with conservation designations contained higher impact scores than the mean values of their corresponding ecoregions. Despite recent advances in mapping cumulative impacts, many limitations remain. Nonetheless, preliminary analyses such as these can provide information relevant to precautionary management and conservation efforts.  相似文献   
126.
Following previous work on bounds for complex dielectrics, bounds on the complex conductivity of a mixture of two isotropic components can be developed which are independent of any special assumption concerning the geometry of the mixture. If certain broad restrictions are assumed, such as isotropy of the mixture, then the bounds can be made more restrictive. These bounds reveal the range of the induced polarization response which can be caused by a mixture of two materials of known complex conductivity. The bounds can also be generalized for spectral responses. The bounds are conservative lithologically in the sense that many of the special models corresponding to boundary responses have lithological counterparts. The chief use for the given bounds is to gain insight into the nature of the induced polarization response. It is also possible to use the bounds to estimate the volume fractions of the components. We illustrate how this is done for the case of a general anisotropic medium.  相似文献   
127.
Many studies of critical wedges treat the interior of the wedge as continuous and do not address the manner in which it grows from the undeformed state to a typical imbricate wedge. In this paper we present a 2D kinematic–mechanical model which attempts to explain the development of a critical wedge in a fold and thrust belt in terms of both gravitational and frictional work. In the undeformed model a series of thrust faults are defined which have the potential to take up an external displacement. The active fault at a given time is that which minimizes gravitational and frictional work as a result of displacement. Displacement on the active fault causes a change in topography and deformation of other faults which may favour an alternative fault at the next time step. The model is a mixed Lagrangian–Eulerian scheme in which the upper surface, in addition to being deformed, is also subject to erosion, transport and sedimentation. The model predicts propagation of thrust fault activity towards the foreland through time as a result of increasing topographic (gravitational) loads and frictional work on deformed hinterland faults. As the zone of fault activity progresses through the developing critical wedge several faults are active over time-scales of ≈1 Myr. However, a simple chronology or sequence of fault activity cannot be assumed as out-of-sequence thrusting occurs during this overall foreland propagation. The detailed spatial and temporal activity of faults is complex and reflects the interaction between the development of topography, the contrast between basal (décollement) and internal coefficients of friction and the effects of erosion and sedimentation. In particular, rates of erosion and sedimentation are found to be important controls on fault activity both spatially and temporally. Erosion, by locally removing topography above a fault, reduces gravitational and frictional work enabling continued fault activity or reactivation. Sedimentation, conversely, acts to increase gravitational and frictional work on a fault, and therefore has the potential to blanket faults and render them inactive. Model results illustrate the complex feedbacks that can exist between tectonic and surficial mass transport processes.  相似文献   
128.
Cation partitioning and speciation in an aqueous soil suspension may depend on the coupling of reaction time, sorbate amount and mineral weathering reactions. These factors were varied in sediment suspension experiments to identify geochemical processes that affect migration of Sr2+ and Cs+ introduced to the subsurface by caustic high level radioactive waste (HLRW). Three glacio-fluvial and lacustrine sediments from the Hanford Site (WA, USA) were subjected to hyperalkaline (pH > 13), Na-Al-NO3-OH solution conditions within a gradient field of (i) sorptive concentration (10−5-10−3 m) and (ii) reaction time (0-365 d). Strontium uptake (qSr) exceeded that of cesium at nearly all reaction times. Sorbent affinity for both Cs+ and Sr2+ increased with clay plus silt content at early times, but a prolonged slow uptake process was observed over the course of sediment weathering that erased the texture effect for Sr2+; all sediments showed similar mass normalized uptake after several months of reaction time. Strontium became progressively recalcitrant to desorption after 92 d, with accumulation and aging of neoformed aluminosilicates. Formation of Cs+ and Sr2+-containing cancrinite and sodalite was observed after 183 d by SEM and synchrotron μ-XRF and μ-XRD. EXAFS data for qSr ≈ 40 mmol kg−1 showed incorporation of Sr2+ into both feldspathoid and SrCO3(s) coordination environments after one year. Adsorption was predominant at early times and low sorbate amount, whereas precipitation, controlled largely by sediment Si release, became increasingly important at longer times and higher sorbate amount. Kinetics of contaminant desorption at pH 8 from one year-weathered sediments showed significant dependence on background cation (Ca2+ versus K+) composition. Results of this study indicate that co-precipitation and ion exchange in neoformed aluminosilicates may be an important mechanism controlling Sr2+ and Cs+ mobility in siliceous sediments impacted by hyperalkaline HLRW.  相似文献   
129.
The higher mid‐latitudes of the Northern Hemisphere are particularly sensitive to climate change as small differences in temperature determine frozen ground status, precipitation phase, and the magnitude and timing of snow accumulation and melt. An international inter‐catchment comparison program, North‐Watch, seeks to improve our understanding of the sensitivity of northern catchments to climate change by examining their hydrological and biogeochemical responses. The catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the United States (Sleepers River, Hubbard Brook and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). This briefing presents the initial stage of the North‐Watch program, which focuses on how these catchments collect, store and release water and identify ‘types’ of hydro‐climatic catchment response. At most sites, a 10‐year data of daily precipitation, discharge and temperature were compiled and evaporation and storage were calculated. Inter‐annual and seasonal patterns of hydrological processes were assessed via normalized fluxes and standard flow metrics. At the annual‐scale, relations between temperature, precipitation and discharge were compared, highlighting the role of seasonality, wetness and snow/frozen ground. The seasonal pattern and synchronicity of fluxes at the monthly scale provided insight into system memory and the role of storage. We identified types of catchments that rapidly translate precipitation into runoff and others that more readily store water for delayed release. Synchronicity and variance of rainfall–runoff patterns were characterized by the coefficient of variation (cv) of monthly fluxes and correlation coefficients. Principal component analysis (PCA) revealed clustering among like catchments in terms of functioning, largely controlled by two components that (i) reflect temperature and precipitation gradients and the correlation of monthly precipitation and discharge and (ii) the seasonality of precipitation and storage. By advancing the ecological concepts of resistance and resilience for catchment functioning, results provided a conceptual framework for understanding susceptibility to hydrological change across northern catchments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
130.
The remote First Nation (FN) communities of the Mushkegowuk Territory on the west coast of James Bay, Ontario, Canada are currently facing increased development pressures and the imposition of a government land use planning process. The land use planning process is mandated in the Far North Act (received Royal Assent on September 23, 2010). There is a need for capacity enhancement for community-based natural resource planning and management in the Territory. A number of frameworks are emerging for addressing change brought on by resource development and building resilience to such change at the community level. Among these include the concept of adaptive capacity. In collaboration with FN community leaders, we explored the use of “collaborative geomatics” tools to foster adaptive capacity. Our action research suggests that collaborative geomatics technologies should enhance the Mushkegowuk First Nations’ adaptive capacity to address environmental and policy change by allowing them to collect and manage data collaboratively (e.g., traditional environmental knowledge, western science) to create opportunities for innovative community development, including natural resource development and management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号