首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1346篇
  免费   119篇
  国内免费   20篇
测绘学   23篇
大气科学   71篇
地球物理   370篇
地质学   648篇
海洋学   102篇
天文学   176篇
综合类   6篇
自然地理   89篇
  2021年   23篇
  2020年   18篇
  2019年   33篇
  2018年   47篇
  2017年   46篇
  2016年   57篇
  2015年   43篇
  2014年   48篇
  2013年   89篇
  2012年   57篇
  2011年   65篇
  2010年   67篇
  2009年   76篇
  2008年   62篇
  2007年   36篇
  2006年   52篇
  2005年   60篇
  2004年   42篇
  2003年   54篇
  2002年   40篇
  2001年   31篇
  2000年   26篇
  1999年   23篇
  1998年   21篇
  1997年   17篇
  1996年   15篇
  1995年   18篇
  1994年   16篇
  1993年   8篇
  1992年   13篇
  1991年   24篇
  1990年   15篇
  1989年   11篇
  1988年   9篇
  1987年   16篇
  1986年   13篇
  1985年   13篇
  1984年   20篇
  1983年   20篇
  1982年   17篇
  1981年   13篇
  1980年   12篇
  1978年   11篇
  1977年   9篇
  1976年   7篇
  1975年   12篇
  1974年   7篇
  1973年   10篇
  1971年   5篇
  1970年   5篇
排序方式: 共有1485条查询结果,搜索用时 814 毫秒
211.
Historic Hg mining in the Cache Creek watershed in the Central California Coast Range has contributed to the downstream transport of Hg to the San Francisco Bay-Delta. Different aspects of Hg mobilization in soils, including pedogenesis, fluvial redistribution of sediment, volatilization and eolian transport were considered. The greatest soil concentrations (>30 mg Hg kg−1) in Cache Creek are associated with mineralized serpentinite, the host rock for Hg deposits. Upland soils with non-mineralized serpentine and sedimentary parent material also had elevated concentrations (0.9–3.7 mg Hg kg−1) relative to the average concentration in the region and throughout the conterminous United States (0.06 mg kg−1). Erosion of soil and destabilized rock and mobilization of tailings and calcines into surrounding streams have contributed to Hg-rich alluvial soil forming in wetlands and floodplains. The concentration of Hg in floodplain sediment shows sediment dispersion from low-order catchments (5.6–9.6 mg Hg kg−1 in Sulphur Creek; 0.5–61 mg Hg kg−1 in Davis Creek) to Cache Creek (0.1–0.4 mg Hg kg−1). These sediments, deposited onto the floodplain during high-flow storm events, yield elevated Hg concentrations (0.2–55 mg Hg kg−1) in alluvial soils in upland watersheds. Alluvial soils within the Cache Creek watershed accumulate Hg from upstream mining areas, with concentrations between 0.06 and 0.22 mg Hg kg−1 measured in soils 90 km downstream from Hg mining areas. Alluvial soils have accumulated Hg released through historic mining activities, remobilizing this Hg to streams as the soils erode.  相似文献   
212.
A new formulation is proposed for the electrical potential developed inside a horizontally‐layered half‐space for a direct current point‐source at the surface. The recursion formula for the kernel coefficient in the potential integral is simpler than the generally used two‐coefficient recursion. The numerical difficulties that may occur during the computation of the integrals and near the source axis are examined and solutions are proposed. The set of equations permits a stable and accurate computation of the tabular potential everywhere in the medium.  相似文献   
213.
The Berre Lagoon has been under strong anthropogenic pressure since the early 1950s. The opening of the hydroelectric EDF power plant in 1966 led to large salinity drops. The zooplankton community was mainly composed of two common brackish species: Acartia tonsa and Brachionus plicatilis. Since 2006, European litigation has strongly constrained the input of freshwater, maintaining the salinity above 15. A study was performed between 2008 and 2010 to evaluate how these modifications have impacted the zooplankton community. Our results show that the community is more diverse and contains several coastal marine species (i.e., Centropages typicus, Paracalanus parvus and Acartia clausi). A. tonsa is still present but is less abundant, whereas B. plicatilis has completely disappeared. Strong predatory marine species, such as chaetognaths, the large conspicuous autochtonous jellyfish Aurelia aurita and the invasive ctenophore Mnemiopsis leidyi, are now very common as either seasonal or permanent features of the lagoon.  相似文献   
214.
215.
216.
Deglacial sequences typically include backstepping grounding zone wedges and prevailing glaciomarine depositional facies. However, in coastal domains, deglacial sequences are dominated by depositional systems ranging from turbiditic to fluvial facies. Such deglacial sequences are strongly impacted by glacio‐isostatic rebound, the rate and amplitude of which commonly outpaces those of post‐glacial eustatic sea‐level rise. This results in a sustained relative sea‐level fall covering the entire depositional time interval. This paper examines a Late Quaternary, forced regressive, deglacial sequence located on the North Shore of the St. Lawrence Estuary (Portneuf Peninsula, Québec, Canada) and aims to decipher the main controls that governed its stratigraphic architecture. The forced regressive deglacial sequence forms a thick (>100 m) and extensive (>100 km2) multiphased deltaic complex emplaced after the retreat of the Laurentide Ice Sheet margin from the study area ca 12 500 years ago. The sedimentary succession is composed of ice‐contact, glaciomarine, turbiditic, deltaic, fluvial and coastal depositional units. A four‐stage development is recognized: (i) an early ice‐contact stage (esker, glaciomarine mud and outwash fan); (ii) an in‐valley progradational stage (fjord head or moraine‐dammed lacustrine deltas) fed by glacigenics; (iii) an open‐coast deltaic progradation, when proglacial depositional systems expanded beyond the valley outlets and merged together; and (iv) a final stage of river entrenchment and shallow marine reworking that affected the previously emplaced deltaic complex. Most of the sedimentary volume (10 to 15 km3) was emplaced during the three‐first stages over a ca 2 kyr interval. In spite of sustained high rates of relative sea‐level fall (50 to 30 mm·year?1), delta plain accretion occurred up to the end of the proglacial open‐coast progradational stage. River entrenchment only occurred later, after a significant decrease in the relative sea‐level fall rates (<30 mm·year?1), and was concurrent with the formation and preservation of extensive coastal deposits (raised beaches, spit platform and barrier sands). The turnaround from delta plain accretion to river entrenchment and coastal erosion is interpreted to be a consequence of the retreat of the ice margin from the river drainage basins that led to the drastic drop of sediment supply and the abrupt decrease in progradation rates. The main internal stratigraphic discontinuity within the forced regressive deglacial sequence does not reflect changes in relative sea‐level variations.  相似文献   
217.
Airborne light detection and ranging (LiDAR) bathymetry appears to be a useful technology for bed topography mapping of non‐navigable areas, offering high data density and a high acquisition rate. However, few studies have focused on continental waters, in particular, on very shallow waters (<2 m) where it is difficult to extract the surface and bottom positions that are typically mixed in the green LiDAR signal. This paper proposes two new processing methods for depth extraction based on the use of different LiDAR signals [green, near‐infrared (NIR), Raman] of the SHOALS‐1000T sensor. They have been tested on a very shallow coastal area (Golfe du Morbihan, France) as an analogy to very shallow rivers. The first method is based on a combination of mathematical and heuristic methods using the green and the NIR LiDAR signals to cross validate the information delivered by each signal. The second method extracts water depths from the Raman signal using statistical methods such as principal components analysis (PCA) and classification and regression tree (CART) analysis. The obtained results are then compared to the reference depths, and the performances of the different methods, as well as their advantages/disadvantages are evaluated. The green/NIR method supplies 42% more points compared to the operator process, with an equivalent mean error (?4·2 cm verusu ?4·5 cm) and a smaller standard deviation (25·3 cm verusu 33·5 cm). The Raman processing method provides very scattered results (standard deviation of 40·3 cm) with the lowest mean error (?3·1 cm) and 40% more points. The minimum detectable depth is also improved by the two presented methods, being around 1 m for the green/NIR approach and 0·5 m for the statistical approach, compared to 1·5 m for the data processed by the operator. Despite its ability to measure other parameters like water temperature, the Raman method needed a large amount of reference data to provide reliable depth measurements, as opposed to the green/NIR method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
218.
The accuracy of the Mexican National Forest Inventory (NFI) map is derived in four distinct ecogeographical areas, using an assessment design tailored for the project. A main achievement of the design was to integrate the high diversity of classes encompassed at the most detailed subcommunity level of the classification scheme within a cost‐controlled statistically sound assessment. A hybrid double sampling strategy was applied to the 2.5 million‐ha study area. A total of 5955 reference sites were verified against their NFI map label. The availability of detailed quasi‐synchronous reference data for the 2000 Landsat‐derived NFI and the high diversity of mapped classes allowed a careful thematic analysis on the selected regions, relevant for national extrapolation. Global accuracy estimates of 64–78 per cent were registered among the four ecogeographical areas (two with mainly temperate climate and the other two with mainly tropical climate), with the lower accuracy levels found in areas more densely covered with forests. According to the estimates, the NFI map tends to underestimate the presence of temperate forest (especially oak) and overestimate the presence of tropical forest in the areas investigated. The analysis of confusions reveals difficulties in unambiguously interpreting or labelling forests with secondary vegetation, herbaceous and/or shrub‐like vegetation as well as distinguishing between aquatic vegetation types. The design proved useful from the perspective of accuracy assessments of regional maps in biodiverse regions.  相似文献   
219.
The use of drainage ditches on farmland has an impact on erosion processes both on‐site and off‐site, though their environmental impacts are not unequivocal. Here we study the runoff response and related rill erosion after installing drainage ditches and assess the effects of stone bunds in north Ethiopia. Three different land management systems were studied in 10 cropland catchments around Wanzaye during the rainy season of 2013: (1) the exclusive use of drainage ditches (locally called feses), (2) the exclusive use of stone bunds, and (3) a mixture of both systems. Stone bunds are an effective soil and water conservation technique, making the land more resistant against on‐site erosion, and allowing feses to be installed at a larger angle with the contour. The mean rill volumes for the 10 studied cropland catchments during the rainy season of 2013 was 3.73 ± 4.20 m3 ha?1 corresponding to a soil loss of 5.72 ± 6.30 ton ha?1. The establishment of feses causes larger rill volumes (R = 0.59, N = 10), although feses are perceived as the best way to avoid soil erosion when no stone bunds are present. The use of feses increases event‐based runoff coefficients (RCs) on cropland from c. 5% to values up to 39%. Also, a combination of low stone bund density and high feses density results in a higher RC, whereas catchments with a high stone bund density and low feses density have a lower RC. Peak runoff discharges decrease when stone bund density increases, whereas feses density is positively related to the peak runoff discharge. A multiple linear relation in which both feses and stone bund densities are used as explanatory variable, performs best in explaining runoff hydrograph peakedness (R2 = 83%). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
220.
Predicted climate change and the associated sea level rise poses an increased threat of flooding due to wave overtopping events at sea and river dikes. To safeguard the land from flooding it is important to keep the soil erosion resistance at the dikes high. As plant roots can be very effective in reducing soil erosion rates by concentrated flow, the main goal of this study is to explore the variability in root system characteristics of five dike vegetation communities along the Scheldt River (Belgium) and to assess their effectiveness in controlling soil erosion rates during concentrated flow. This study is the first one to investigate systematically the erosion‐reducing potential of the root properties of representative dike vegetation communities in a temperate humid climate. Results show that the presence of Urtica dioica resulted in large differences in root length density (RLD) among dike vegetation communities. Observed RLD values in the topsoil ranged from 129 to 235 km m‐3 for dike vegetation communities without U. dioica, while smaller values ranging from 22 to 58 km m?3 were found for vegetation communities with U. dioica. The erosion‐reducing effect of the dike vegetation communities was estimated based on a global Hill curve model, linking the RLD to the soil detachment ratio (SDR; i.e. the ratio of the soil detachment rate for root‐permeated topsoils to the soil detachment rate for root‐free topsoils). Concentrated flow erosion rates are likely to be reduced to 13–16% of the erosion rates for root‐free topsoils if U. dioica is absent compared to 22–30% for vegetation communities with U. dioica. Hence, to maintain a high resistance of the soil against concentrated flow erosion it is important to avoid the overgrowth of grassland by U. dioica through an effective vegetation management. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号