There is a significant relationship between ambient temperature and mortality. In healthy individuals with no underlying co-morbid conditions, there is an efficient heat regulation system which enables the body to effectively handle thermal stress. However, in vulnerable groups, especially in elderly over the age of 65 years, infants and individuals with co-morbid cardiovascular and/or respiratory conditions, there is a deficiency in thermoregulation. When temperatures exceed a certain limit, being cold winter spells or heat waves, there is an increase in the number of deaths. In particular, it has been shown that at temperatures above 27 °C, the daily mortality rate increases more rapidly per degree rise compared to when it drops below 27 °C.This is especially of relevance with the current emergency of global warming. Besides the direct effect of temperature rises on human health, global warming will have a negative impact on primary producers and livestock, leading to malnutrition, which will in turn lead to a myriad of health related issues. This is further exacerbated by environmental pollution.Public health measures that countries should follow should include not only health-related information strategies aiming to reduce the exposure to heat for vulnerable individuals and the community, but improved urban planning and reduction in energy consumption, among many others. This will reduce the carbon footprint and help avert global warming, thus reducing mortality. 相似文献
Serpentinized rocks closely associated with Paleoproterozoic eclogitic metabasites were recently discovered at Eseka area in the northwestern edge of the Congo craton in southern Cameroon. Here, we present new field data, petrography, and first comprehensible whole-rock geochemistry data and discuss the protolith and tectonic significance of these serpentinites in the region. The studied rock samples are characterized by pseudomorphic textures, including mesh microstructure formed by serpentine intergrowths with cores of olivine, bastites after pyroxene. Antigorite constitutes almost the whole bulk of the rocks and is associated (to the less amount) with tremolite, talc, spinel, and magnetite. Whole-rock chemistry of the Eseka serpentinites led to the distinction of two types. Type 1 has high MgO (> 40 wt%) content and high Mg# values (88.80) whereas Type 2 serpentinite samples display relatively low MgO concentration and Mg# values (< 40 and 82.88 wt%, respectively). Both types have low Al/Si and high Mg/Si ratios than the primitive mantle, reflecting a refractory abyssal mantle peridotite protolith. Partial melting modeling indicates that these rocks were derived from melting of spinel peridotite before serpentinization. Bulk rock high-Ti content is similar to the values of subducted serpentinites (> 50 ppm). This similarity, associated with the high Cr contents, spinel-peridotite protolith compositions and Mg/Si and Al/Si ratios imply that the studied serpentinites were formed in a subduction-related environment. The U-shaped chondrite normalized-REE patterns of serpentinized peridotites, coupled with similar enrichments in LREE and HFSE, suggest the refertilized nature due to melt/rock interaction prior to serpentinization. Based on the results, we suggest that the Eseka serpentinized peridotites are mantle residues that suffered a high degree of partial melting in a subduction-related environment, especially in Supra Subduction Zone setting. These new findings suggest that the Nyong series in Cameroon represents an uncontested Paleoproterozoic suture zone between the Congo craton and the São Francisco craton in Brazil.
Fifty-two grab samples of bottom sediment in settling ponds were obtained at 17 surface coal mines in the eastern and midwestern
U.S. A series of laboratory extraction procedures were designed to simulate a wide range of possible natural conditions. The
three types of laboratory extraction procedures were (1) a low-pH buffered extract; (2) a series of low-pH, near-neutral-pH,
and high-pH nonbuffered extracts; and (3) a DTPA extract. For the transition metals examined (Fe, Mn, Ni, Zn, Co, Cu, Cr,
Fe, Al), higher percentages were extracted by the low-pH buffered extract than by the low-pH nonbuffered extract and the DTPA
extract. Within the nonbuffered series, higher percentages of individual metals were extracted at lower pH levels. There was
generally a consistent order of “extractability” for all the extracts performed. At the mines using a chemical treatment to
neutralize acid mine drainage, Mn was the most mobile and Fe and Al the least mobile of the metals considered; at the mines
not using a chemical treatment, Ni, Zn, and Co were among the most mobile and Fe, Al, and Cr the least mobile of the metals
studied.
Two stepwise regression procedures (maximum R2 improvement and backward elimination) were used to suggest a ranking of independent variables that influence extractable
metals. Statistically significant independent variables differed for the various metals. In general, the total amount of metal
present was most important in determining metal extractability in the buffered extract at the mines using chemical treatment,
and variables related to the natural acidity or alkalinity of the sediment and element interrelationships were important in
the other extracts. A detailed examination of regression equations for the buffered extract suggests that it is possible to
predict extractable metals using simple regression models based on the total amount of metals present, metals interrelationships,
and sediment acidity or alkalinity. 相似文献
Priabonian age is highlighted for the first time in Corsica in the Venaco Formation using the presence of specific microfauna (in particular some representatives of Turborotalia cerroazulensis lineage). This silicoclastic formation is mainly represented by coarse facies. It is composed of three members from south to north and from oldest towards youngest: member of Uboli, Cardo and Orsu. The sedimentologic analysis reveals a gravity depositional environment, involving different type of currents. Sedimentologic and chronologic characteristics make the Venaco Formation and the Annot Formation (p.p.) equivalent. Dating the Venaco Fm. brings confirmation that the green schist metamorphism of the Variscan batholith and the related deformation are from the pre-Priabonian period. 相似文献
Dating the magmatic events in the Montagne Noire gneiss dome is a key point to arbitrate between the different interpretations of the Late Carboniferous–Early Permian tectonics in this southern part of the Variscan belt. The Saint-Eutrope orthogneiss crops out along the northern flank of the dome. We show that the protolith of this orthogneiss is an Ordovician granite dated at 455 ± 2 Ma (LA-ICP-MS U-Pb dating on zircon). This age is identical to that previously obtained on the augen orthogneiss of the southern flank, strongly suggesting that both orthogneiss occurrences have the same Ordovician protolith. The Saint-Eutrope orthogneiss experienced intense shearing along the Espinouse extensional detachment at ca. 295 Ma (LA-ICP-MS U-Pb-Th on monazite), an age close to that determined previously on mica by the 39Ar-40Ar method and contemporaneous with the emplacement age of the syntectonic Montalet granite farther to the west. This normal sense shearing reworked previous fabrics related to Variscan thrusting that can be still observed in the augen orthogneiss of the southern flank, and is responsible for the spectacular “C/S-like” pattern of the Saint-Eutrope orthogneiss. This work also shows that care is needed when dealing with C/S-type structures, since they can develop not only in syntectonic intrusions, but also in orthogneisses affected by an intense secondary deformation, at decreasing temperature. 相似文献
Journal of Earth System Science - The present work studies the trends in drought in northern Algeria. This region was marked by a severe, wide-ranging and persistent drought due to its... 相似文献
Deglacial sequences typically include backstepping grounding zone wedges and prevailing glaciomarine depositional facies. However, in coastal domains, deglacial sequences are dominated by depositional systems ranging from turbiditic to fluvial facies. Such deglacial sequences are strongly impacted by glacio‐isostatic rebound, the rate and amplitude of which commonly outpaces those of post‐glacial eustatic sea‐level rise. This results in a sustained relative sea‐level fall covering the entire depositional time interval. This paper examines a Late Quaternary, forced regressive, deglacial sequence located on the North Shore of the St. Lawrence Estuary (Portneuf Peninsula, Québec, Canada) and aims to decipher the main controls that governed its stratigraphic architecture. The forced regressive deglacial sequence forms a thick (>100 m) and extensive (>100 km2) multiphased deltaic complex emplaced after the retreat of the Laurentide Ice Sheet margin from the study area ca 12 500 years ago. The sedimentary succession is composed of ice‐contact, glaciomarine, turbiditic, deltaic, fluvial and coastal depositional units. A four‐stage development is recognized: (i) an early ice‐contact stage (esker, glaciomarine mud and outwash fan); (ii) an in‐valley progradational stage (fjord head or moraine‐dammed lacustrine deltas) fed by glacigenics; (iii) an open‐coast deltaic progradation, when proglacial depositional systems expanded beyond the valley outlets and merged together; and (iv) a final stage of river entrenchment and shallow marine reworking that affected the previously emplaced deltaic complex. Most of the sedimentary volume (10 to 15 km3) was emplaced during the three‐first stages over a ca 2 kyr interval. In spite of sustained high rates of relative sea‐level fall (50 to 30 mm·year?1), delta plain accretion occurred up to the end of the proglacial open‐coast progradational stage. River entrenchment only occurred later, after a significant decrease in the relative sea‐level fall rates (<30 mm·year?1), and was concurrent with the formation and preservation of extensive coastal deposits (raised beaches, spit platform and barrier sands). The turnaround from delta plain accretion to river entrenchment and coastal erosion is interpreted to be a consequence of the retreat of the ice margin from the river drainage basins that led to the drastic drop of sediment supply and the abrupt decrease in progradation rates. The main internal stratigraphic discontinuity within the forced regressive deglacial sequence does not reflect changes in relative sea‐level variations. 相似文献
Tomcod (Microgadus tomcod) in the St. Lawrence estuarine transition zone (ETZ) undergo an ontogenetic habitat shift. Older age classes, characterised
by a male-dominated sex ratio, disperse downstream over the summer months to occupy the colder more saline waters of the estuary.
Significant differences in length and mass along the salinity gradient were observed in September with upstream fish of any
given age class generally exhibiting greater growth. These differences were not seen in early summer. Benthic amphipod δ34S signatures were strongly correlated with salinity and served to demonstrate that tomcod δ34S signatures were not in isotopic equilibrium in the more saline waters of the ETZ. Seasonal distributional patterns, growth
dynamics and isotopic disequilibrium all indicate that the observed habitat shift may occur on an annual basis, following
winter aggregation in warmer, less saline waters. Tomcod located in the downstream parts of the ETZ, predominantly males,
were significantly more sexually developed than upstream tomcod for a given age. On the other hand, greater growth early in
life is insured by occupying warmer, upstream waters during the summer months. 相似文献