首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   622篇
  免费   44篇
  国内免费   13篇
测绘学   21篇
大气科学   100篇
地球物理   151篇
地质学   198篇
海洋学   47篇
天文学   96篇
综合类   1篇
自然地理   65篇
  2024年   1篇
  2022年   5篇
  2021年   22篇
  2020年   19篇
  2019年   16篇
  2018年   20篇
  2017年   25篇
  2016年   54篇
  2015年   31篇
  2014年   30篇
  2013年   46篇
  2012年   52篇
  2011年   38篇
  2010年   42篇
  2009年   51篇
  2008年   33篇
  2007年   30篇
  2006年   35篇
  2005年   26篇
  2004年   19篇
  2003年   14篇
  2002年   6篇
  2001年   13篇
  2000年   14篇
  1999年   7篇
  1998年   7篇
  1997年   7篇
  1996年   3篇
  1994年   2篇
  1993年   2篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1980年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有679条查询结果,搜索用时 0 毫秒
21.
Cores and exposed cliff sections in salt marshes around Ho Bugt, a tidal embayment in the northernmost part of the Danish Wadden Sea, were subjected to 14C dating and litho- and biostratigraphical analyses to reconstruct paleoenvironmental changes and to establish a late Holocene relative sea-level history. Four stages in the late Holocene development of Ho Bugt can be identified: (1) groundwater-table rise and growth of basal peat (from at least 2300 BC to AD 0); (2) salt-marsh formation (0 to AD 250); (3) a freshening phase (AD 250 to AD 1600?), culminating in the drying out of the marshes and producing a distinct black horizon followed by an aeolian phase with sand deposition; and (4) renewed salt-marsh deposition (AD 1600? to present). From 16 calibrated AMS radiocarbon ages on fossil plant fragments and 4 calibrated conventional radiocarbon ages on peat, we reconstructed a local relative sea-level history that shows a steady sea-level rise of 4 m since 4000 cal yr BP. Contrary to suggestions made in the literature, the relative sea-level record of Ho Bugt does not contain a late Holocene highstand. Relative sea-level changes at Ho Bugt are controlled by glacio-isostatic subsidence and can be duplicated by a glacial isostatic adjustment model in which no water is added to the world's oceans after ca. 5000 cal yr BP.  相似文献   
22.
The Tibesti massif, one of the most prominent features of the Sahara desert, covers an area of some 100,000 km2. Though largely absent from scientific inquiry for several decades, it is one of the world’s major volcanic provinces, and a key example of continental hot spot volcanism. The intense activity of the TVP began as early as the Oligocene, though the major products that mark its surface date from Lower Miocene to Quaternary (Furon (Geology of Africa. Oliver & Boyd, Edinburgh (trans 1963, orig French 1960), pp 1–377, 1963)); Gourgaud and Vincent (J Volcanol Geotherm Res 129:261–290, 2004). We present here a new and consistent analysis of each of the main components of the Tibesti Volcanic Province (TVP), based on examination of multispectral imagery and digital elevation data acquired from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Our synthesis of these individual surveys shows that the TVP is made up of several shield volcanoes (up to 80 km diameter) with large-scale calderas, extensive lava plateaux and flow fields, widespread tephra deposits, and a highly varied structural relief. We compare morphometric characteristics of the major TVP structures with other hot spot volcanoes (the Hawaiian Islands, the Galápagos Islands, the Canary and Cape Verdes archipelagos, Jebel Marra (western Sudan), and Martian volcanoes), and consider the implications of differing tectonic setting (continental versus oceanic), the thickness and velocity of the lithosphere, the relative sizes of main volcanic features (e.g. summit calderas, steep slopes at summit regions), and the extent and diversity of volcanic features. These comparisons reveal morphologic similarities between volcanism in the Tibesti, the Galápagos, and Western Sudan but also some distinct features of the TVP. Additionally, we find that a relatively haphazard spatial development of the TVP has occurred, with volcanism initially appearing in the Central TVP and subsequently migrating to both the Eastern and Western TVP regions. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   
23.
Volcán Huaynaputina is a group of four vents located at 16°36'S, 70°51'W in southern Peru that produced one of the largest eruptions of historical times when ~11 km3 of magma was erupted during the period 19 February to 6 March 1600. The main eruptive vents are located at 4200 m within an erosion-modified amphitheater of a significantly older stratovolcano. The eruption proceeded in three stages. Stage I was an ~20-h sustained plinian eruption on 19-20 February that produced an extensive dacite pumice fall deposit (magma volume ~2.6 km3). Throughout medial-distal and distal parts of the dispersal area, a fine-grained plinian ashfall unit overlies the pumice fall deposit. This very widespread ash (magma volume ~6.2 km3) has been recognized in Antarctic ice cores. A short period of quiescence allowed local erosion of the uppermost stage-I deposits and was followed by renewed but intermittent explosive activity between 22 and 26 February (stage II). This activity resulted in intercalated pyroclastic flow and pumice fall deposits (~1 km3). The flow deposits are valley confined, whereas associated co-ignimbrite ash fall is found overlying the plinian ash deposit. Following another period of quiescence, vulcanian-type explosions of stage III commenced on 28 February and produced crudely bedded ash, lapilli, and bombs of dense dacite (~1 km3). Activity ceased on 6 March. Compositions erupted are predominantly high-K dacites with a phenocryst assemblage of plagioclase>hornblende>biotite>Fe-Ti oxides-apatite. Major elements are broadly similar in all three stages, but there are a few important differences. Stage-I pumice has less evolved glass compositions (~73% SiO2), lower crystal contents (17-20%), lower density (1.0-1.3 g/cm3), and phase equilibria suggest higher temperature and volatile contents. Stage-II and stage-III juvenile clasts have more evolved glass (~76% SiO2) compositions, higher crystal contents (25-35%), higher densities (up to 2.2 g/cm3), and lower temperature and volatile contents. All juvenile clasts show mineralogical evidence for thermal disequilibrium. Inflections on a plot of log thickness vs area1/2 for the fall deposits suggest that the pumice fall and the plinian ash fall were dispersed under different conditions and may have been derived from different parts of the eruption column system. The ash appears to have been dispersed mainly from the uppermost parts of the umbrella cloud by upper-level winds, whereas the pumice fall may have been derived from the lower parts of the umbrella cloud and vertical part of the eruption column and transported by a lower-altitude wind field. Thickness half distances and clast half distances for the pumice fall deposit suggests a column neutral buoyancy height of 24-32 km and a total column height of 34-46 km. The estimated mass discharge rate for the ~20-h-long stage-I eruption is 2.4᎒8 kg/s and the volumetric discharge rate is ~3.6᎒5 m3/s. The pumice fall deposit has a dispersal index (Hildreth and Drake 1992) of 4.4, and its index of fragmentation is at least 89%, reflecting the dominant volume of fines produced. Of the 11 km3 total volume of dacite magma erupted in 1600, approximately 85% was evacuated during stage 1. The three main vents range in size from ~70 to ~400 m. Alignment of these vents and a late-stage dyke parallel to the NNW-SSE trend defined by older volcanics suggest that the eruption initiated along a fissure that developed along pre-existing weaknesses. During stage I this fissure evolved into a large flared vent, vent 2, with a diameter of approximately 400 m. This vent was active throughout stage II, at the end of which a dome was emplaced within it. During stage III this dome was eviscerated forming the youngest vent in the group, vent 3. A minor extra-amphitheater vent was produced during the final event of the eruptive sequence. Recharge may have induced magma to rise away from a deep zone of magma generation and storage. Subsequently, vesiculation in the rising magma batch, possibly enhanced by interaction with an ancient hydrothermal system, triggered and fueled the sustained Plinian eruption of stage I. A lower volatile content in the stage-II and stage-III magma led to transitional column behavior and pyroclastic flow generation in stage II. Continued magma uprise led to emplacement of a dome which was subsequently destroyed during stage III. No caldera collapse occurred because no shallow magma chamber developed beneath this volcano.  相似文献   
24.
印度板块和亚洲大陆在何时何地碰撞   总被引:1,自引:0,他引:1  
印度板块和亚洲大陆的初始碰撞时间是所有相关的喜马拉雅-西藏造山体系演化模式的主控条件,并严重影响到对众多与青藏高原隆升和东亚大陆挤出相关的地质过程速率的解释,以及对新生代全球气候变化的理解。尽管印度板块和亚洲大陆汇聚的速率在55Ma突然减缓被广泛地认为是初始碰撞的标志,但这次碰撞所造成的主要构造效应直到20多个百万年以后才显现出来。对印度板块和亚洲大陆相对位置的重新估算,表明它们在55Ma时并没有达到可以彼此发生碰撞的距离。基于来自西藏新的野外证据和对已有数据的重新评估,认为初始碰撞发生在始新世—渐新世之交(约34Ma),并对55Ma时发生的地质事件提出了另一种解释  相似文献   
25.
Questions persist about interpreting isotope ratios of bound and mobile soil water pools, particularly relative to clay content and extraction conditions. Interactions between pools and resulting extracted water isotope composition are presumably related to soil texture, yet few studies have manipulated the bound pool to understand its influence on soil water processes. Using a series of drying and spiking experiments, we effectively labelled bound and mobile water pools in soils with varying clay content. Soils were first vacuum dried to remove residual water, which was then replaced with heavy isotope-enriched water prior to oven drying and spiking with heavy isotope-depleted water. Water was extracted via centrifugation or cryogenic vacuum distillation (at four temperatures) and analysed for oxygen and hydrogen isotope ratios via isotope ratio mass spectrometry. Water from centrifuged samples fell along a mixing line between the two added waters but was more enriched in heavy isotopes than the depleted label, demonstrating that despite oven drying, a residual pool remains and mixes with the mobile water. Soils with higher clay + silt content appeared to have a larger bound pool. Water from vacuum distillation samples have a significant temperature effect, with high temperature extractions yielding progressively more heavy isotope-enriched values, suggesting that Rayleigh fractionation occurred at low temperatures in the vacuum line. By distinctly labelling bound and mobile soil water pools, we detected interactions between the two that were dependent on soil texture. Although neither extraction method appeared to completely extract the combined bound and mobile (total water) pool, centrifugation and high temperature cryogenic vacuum distillations were comparable for both δ2H and δ18O of soil water isotope ratios.  相似文献   
26.
Testing the accuracy of 3D modelling algorithms used for geological applications is extremely difficult as model results cannot be easily validated. This paper presents a new approach to evaluate the effectiveness of common interpolation algorithms used in 3D subsurface modelling, utilizing four synthetic grids to represent subsurface environments of varying geological complexity. The four grids are modelled with Inverse Distance Weighting and Ordinary Kriging, using data extracted from the synthetic grids in different spatial distribution patterns (regular, random, clustered and sparse), and with different numbers of data points (100, 256, 676 and 1,600). Utilizing synthetic grids for this evaluation allows quantitative statistical assessment of the accuracy of both interpolation algorithms in a variety of sampling conditions. Data distribution proved to be an important factor; as in many geological situations, relatively small numbers of randomly distributed data points can generate more accurate 3D models than larger amounts of clustered data. This study provides insight for optimizing the quantity and distribution of data required to accurately and cost-effectively interpolate subsurface units of varying complexity.  相似文献   
27.
Engineering projects that require deformation monitoring frequently utilize geodetic sensors to measure displacements of target points located in the deformation zone. In situations where control stations and targets are separated by a kilometer or more, GPS can offer higher precision position updates at more frequent intervals than can normally be achieved using total station technology. For large-scale deformation projects requiring the highest precision, it is therefore advisable to use a combination of the two sensors. In response to the need for high precision, continuous GPS position updates in harsh deformation monitoring environments, a software has been developed that employs triple-differenced carrier-phase measurements in a delayed-state Kalman filter. Two data sets were analyzed to test the capabilities of the software. In the first test, a GPS antenna was displaced using a translation stage to mimic slow deformation. In the second test, data collected at a large open pit mine were processed. It was shown that the delayed-state Kalman filter developed could detect millimeter-level displacements of a GPS antenna. The actual precision attained depends upon the amount of process noise infused at each epoch to accommodate the antenna displacements. Higher process noise values result in quicker detection times, but at the same time increase the noise in the solutions. A slow, 25 mm displacement was detected within 30 min of the full displacement with sigma values in E, N and U of ±10 mm or better. The same displacement could also be detected in less than 5 h with sigma values in E, N and U of ±5 mm or better. The software works best for detecting long period deformations (e.g., 20 mm per day or less) for which sigma values of 1–2 mm are attained in all three solution components. It was also shown that the triple-differenced carrier-phase observation can be used to significantly reduce the effects of residual tropospheric delay that would normally plague double-differenced observations in harsh GPS environments.
Don KimEmail:
  相似文献   
28.
Global travertine deposition modulated by oscillations in climate   总被引:1,自引:0,他引:1  
Travertine deposits are important records of past fluid flow in the Earth's crust, and document fluid migration through both tectonic activity and changes in climate. While many studies hint at possible relationships between travertine formation and global climate, none have investigated these connections on a global scale. Here we compile 1649 published travertine ages from six continents to test the hypothesis that global and/or regional changes in climate regulate travertine deposition. Peaks in bedded travertine ages occur with main frequencies that correspond to 100‐kyr changes in global climate, where most peaks occur during glacial terminations or interglacial periods, including a large peak that coincides with the Early Holocene climatic optimum. Time–series analysis also suggests a possible connection with 41‐kyr obliquity cycles. At regional scales, many peaks also correspond with local times of high precipitation or wet conditions. This can be attributed to higher groundwater recharge rates, providing the necessary water to form travertine. Many bedded travertine‐depositing systems may therefore be water‐limiting and sufficient CO2 may be present even during times of no travertine deposition. Exceptions to this conclusion are banded vein travertine deposits, which typically form during times of dry climate when water tables are low. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   
29.
A fairly undeveloped barrier island along the mid-Atlantic coast, Onslow Beach, was exposed to two differing, yet sequential meteorological events in the fall of 2008. The response of the barrier island differed significantly enough to warrant investigation into the causes of aberrant overwash locations. Tropical Storm Hanna generated high significant wave heights for a short period of time and caused overwash events along the southern portion of Onslow Beach. The Nor’easter and subsequent wind shift after TS Hanna generated significant wave heights that were lower than during TS Hanna, yet more locations of overwash were recorded along the beach. Data from NOAA wave buoys and a nearshore deployed AWAC were analyzed to understand the underlying physics behind the recorded differences in barrier island response. These data were also used to validate a coupled hydrodynamic (ADCIRC) and waves (SWAN) model to investigate the alongshore variability. Low frequency variability, on the order of days, and tidal timing of shoreward high significant wave heights contributed to the recorded variability.  相似文献   
30.
A quadrupole-based mass spectrometer used in static mode has been employed to determine noble gas concentrations of water samples by isotope dilution. Water samples are degassed and spiked with minor isotopes of each noble gas. After separation of the various gas components, the isotopic ratios are measured in the mass spectrometer. Because a spike is added to each sample, the recovery of each gas component does not have to be quantitative. Equilibration temperatures are calculated from the gas concentrations, based on noble gas solubility data. An accuracy of ±1°C, from the air equilibration temperature, is attainable for air-saturated water samples prepared under controlled conditions in the laboratory. The method has been applied to groundwaters from the London Basin Chalk aquifer. The noble-gas-derived temperatures are consistent with climatic conditions prevailing at the periods of recharge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号