首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4895篇
  免费   194篇
  国内免费   47篇
测绘学   99篇
大气科学   402篇
地球物理   1241篇
地质学   1655篇
海洋学   460篇
天文学   763篇
综合类   18篇
自然地理   498篇
  2022年   24篇
  2021年   63篇
  2020年   61篇
  2019年   70篇
  2018年   93篇
  2017年   82篇
  2016年   132篇
  2015年   132篇
  2014年   132篇
  2013年   233篇
  2012年   154篇
  2011年   240篇
  2010年   173篇
  2009年   251篇
  2008年   211篇
  2007年   197篇
  2006年   206篇
  2005年   177篇
  2004年   164篇
  2003年   147篇
  2002年   153篇
  2001年   76篇
  2000年   98篇
  1999年   82篇
  1998年   84篇
  1997年   63篇
  1996年   63篇
  1995年   86篇
  1994年   81篇
  1993年   62篇
  1992年   65篇
  1991年   51篇
  1990年   70篇
  1989年   61篇
  1988年   60篇
  1987年   64篇
  1986年   59篇
  1985年   69篇
  1984年   91篇
  1983年   70篇
  1982年   70篇
  1981年   58篇
  1980年   68篇
  1979年   55篇
  1978年   56篇
  1977年   40篇
  1976年   50篇
  1975年   51篇
  1974年   39篇
  1973年   51篇
排序方式: 共有5136条查询结果,搜索用时 31 毫秒
151.
152.
Multiple geochemical tracers [ion chemistry, stable isotopes of water, chlorofluorocarbons (CFC), tritium] and a 25-year-long record of discharge were used to understand residence times and flow paths of groundwater seeps in the fractured rock aquifer surrounding the Mission Tunnel, Santa Barbara, California. Tritium data from individual seeps indicate that seep waters are a mixture of >45-year-old (recharged prior to the nuclear bomb tests) and young groundwater. CFC data support this interpretation, however, a two-end member mixing model cannot completely explain the age tracer data. Microbial degradation and partial re-equilibration complicate the CFC signal. Spectral analysis of precipitation and groundwater seepage records shows that seepage lags precipitation by 3 months. This delay is related to the advancement of the wetting front and increasing the number of active flow paths. Additionally, the amount of seepage produced by precipitation is less during extended periods of drought than during normal or wet periods, suggesting antecedent conditions strongly affect flow through this fractured rock aquifer.  相似文献   
153.
Mercury from mineral deposits and potential environmental impact   总被引:6,自引:0,他引:6  
  相似文献   
154.
Whole-rock Pb isotopic signatures and U/Pb geochronology refute a Rodinian correlation of northeastern Laurentia and proto-Andean Amazonia. According to this previously proposed model, the Labrador–Scotland–Greenland Promontory (LSGP) of northeastern Laurentia collided with the proto-Andean margin of Amazonia, at the Arica Embayment, during the Grenville/Sunsás Orogeny (ca. 1.0 Ga). Links between the two margins were based upon the correlation of the LSGP with Arequipa-Antofalla Basement (AAB), a Proterozoic block along the proto-Andean margin of Amazonia adjacent to the Arica Embayment. Specifically, similarities in 1.8–1.0 Ga basement rocks in both regions suggested that the AAB was originally a piece of the LSGP. Furthermore, similarities in unique, post-collisional, but pre-rift, glacial sedimentary sequences also supported a link between the AAB and LSGP.Tests of these apparent similarities fail to support correlation of the AAB and the LSGP and, thus, eliminate a direct link between northeastern Laurentia and southwestern Amazonia in Rodinia. However, Pb isotopic compositions and U/Pb geochronology provide the basis for two new correlations, namely, (1) the ca. 1.3–1.0 Ga basement in the central and southern Appalachians may be an allochthonous block that was transferred to Laurentia from Amazonia at ca. 1.0 Ga, and (2) an allochthonous AAB may be a piece of the Kalahari Craton that was transferred to Amazonia at ca. 1.0 Ga. Based on these new correlations and a previously proposed Grenvillian connection between southern Laurentia (Llano) and Kalahari, we propose that Amazonia may have collided with a contiguous southeastern Laurentia/Kalahari margin at ca. 1.0 Ga.  相似文献   
155.
Oxygen isotope ratios of merrillite and chlorapatite in the Martian meteorites ALH84001 and Los Angeles have been measured by ion microprobe in multicollector mode. δ18O values of phosphate minerals measured in situ range from ∼3 to 6‰, and are similar to Martian meteorite whole-rock values, as well as the δ18O of igneous phosphate on Earth. These results suggest that the primary, abiotic, igneous phosphate reservoir on Mars is similar in oxygen isotopic composition to the basaltic phosphate reservoir on Earth. This is an important first step in the characterization of Martian phosphate reservoirs for the use of δ18O of phosphate minerals as a biomarker for life on Mars. Cumulative textural, major-element, and isotopic evidence presented here suggest a primary, igneous origin for the phosphates in Los Angeles and ALH84001; textural and chemical evidence suggests that phosphates in ALH84001 were subsequently shock-melted in a later event.  相似文献   
156.
The desorption of 137Cs+ was investigated on sediments from the United States Hanford site. Pristine sediments and ones that were contaminated by the accidental release of alkaline 137Cs+-containing high level nuclear wastes (HLW, 2 × 106 to 6 × 107 pCi 137Cs+/g) were studied. The desorption of 137Cs+ was measured in Na+, K+, Rb+, and NH4+electrolytes of variable concentration and pH, and in presence of a strong Cs+-specific sorbent (self-assembled monolayer on a mesoporous support, SAMMS). 137Cs+ desorption from the HLW-contaminated Hanford sediments exhibited two distinct phases: an initial instantaneous release followed by a slow kinetic process. The extent of 137Cs+ desorption increased with increasing electrolyte concentration and followed a trend of Rb+ ≥ K+ > Na+ at circumneutral pH. This trend followed the respective selectivities of these cations for the sediment. The extent and rate of 137Cs+ desorption was influenced by surface armoring, intraparticle diffusion, and the collapse of edge-interlayer sites in solutions containing K+, Rb+, or NH4+. Scanning electron microscopic analysis revealed HLW-induced precipitation of secondary aluminosilicates on the edges and basal planes of micaceous minerals that were primary Cs+ sorbents. The removal of these precipitates by acidified ammonium oxalate extraction significantly increased the long-term desorption rate and extent. X-ray microprobe analyses of Cs+-sorbed micas showed that the 137Cs+ distributed not only on mica edges, but also within internal channels parallel to the basal plane, implying intraparticle diffusive migration of 137Cs+. Controlled desorption experiments using Cs+-spiked pristine sediment indicated that the 137Cs+ diffusion rate was fast in Na+-electrolyte, but much slower in the presence of K+ or Rb+, suggesting an effect of edge-interlayer collapse. An intraparticle diffusion model coupled with a two-site cation exchange model was used to interpret the experimental results. Model simulations suggested that about 40% of total sorbed 137Cs+ was exchangeable, including equilibrium and kinetic desorbable pools. At pH 3, this ratio increased to 60-80%. The remainder of the sorbed 137Cs+ was fixed or desorbed at much slower rate than our experiments could detect.  相似文献   
157.
Arid slopes on the southeastern side of Maui are densely covered with archaeological remains of Hawaiian settlement from the late prehistoric to early postcontact period (ca. A.D. 1500-1860). Permanent habitation sites, agricultural features, and religious structures indicate perennial occupation and farming in a subregion called Kahikinui, yet there is presently no year-round water source. We explore the possibility that postcontact deforestation led to the loss of either (1) perennial channel flow or (2) perennial springs or seeps. To investigate the first possibility, we estimated ancient peak flows on 11 ephemeral channels in Kahikinui using field measurements and paleohydrology. Peak-flow estimates (3-230 m3/s) for a given drainage area are smaller than those for current perennial Maui streams, but are equivalent to gauged peak flows from ephemeral and intermittent streams in the driest regions of Hawai’i and Maui islands. This is consistent with the long-term absence of perennial channel flow in Kahikinui. On the other hand, others have shown that canopy fog-drip in Hawai’i can be greater than rainfall and thus a large part of groundwater recharge. Using isolated live remnants and snags, we estimate the former extent of the forest upstream from archaeological sites. We use rough estimates of the loss of fog-drip recharge caused by deforestation and apply a simple, steady-state hydrologic model to calculate potential groundwater table fall. These order-of-magnitude estimates indicate that groundwater could have fallen by a minimum of several meters, abandoning perennial seeps. This is consistent with archaeological evidence for former perennial seeps, such as stonewalls enclosing potential seeps to protect them. Although longer-term reductions in rainfall cannot be ruled out as a factor, deforestation and loss of fog-drip recharge are obvious and more immediate reasons for a recent loss of perennial water in Kahikinui, Maui.  相似文献   
158.
159.
Hydrogenetic ferromanganese oxyhydroxide crusts (Fe-Mn crusts) precipitate out of cold ambient ocean water onto hard-rock surfaces (seamounts, plateaus, ridges) at water depths of about 400 to 4000 m throughout the ocean basins. The slow-growing (mm/Ma) Fe-Mn crusts concentrate most elements above their mean concentration in the Earth’s crust. Tellurium is enriched more than any other element (up to about 50,000 times) relative to its Earth’s crustal mean of about 1 ppb, compared with 250 times for the next most enriched element.We analyzed the Te contents for a suite of 105 bulk hydrogenetic crusts and 140 individual crust layers from the global ocean. For comparison, we analyzed 10 hydrothermal stratabound Mn-oxide samples collected from a variety of tectonic environments in the Pacific. In the Fe-Mn crust samples, Te varies from 3 to 205 ppm, with mean contents for Pacific and Atlantic samples of about 50 ppm and a mean of 39 ppm for Indian crust samples. Hydrothermal Mn samples have Te contents that range from 0.06 to 1 ppm. Continental margin Fe-Mn crusts have lower Te contents than open-ocean crusts, which is the result of dilution by detrital phases and differences in growth rates of the hydrogenetic phases.Correlation coefficient matrices show that for hydrothermal deposits, Te has positive correlations with elements characteristic of detrital minerals. In contrast, Te in open-ocean Fe-Mn crusts usually correlates with elements characteristic of the MnO2, carbonate fluorapatite, and residual biogenic phases. In continental margin crusts, Te also correlates with FeOOH associated elements. In addition, Te is negatively correlated with water depth of occurrence and positively correlated with crust thickness. Q-mode factor analyses support these relationships. However, sequential leaching results show that most of the Te is associated with FeOOH in Fe-Mn crusts and ≤10% is leached with the MnO2.Thermodynamic calculations indicate that Te occurs predominantly as H5TeO6 in ocean water. The speciation of Te in ocean water and charge balance considerations indicate that Te should be scavenged by FeOOH, which is in agreement with our leaching results. The thermodynamically more stable Te(IV) is less abundant by factors of 2 to 3.5 than Te(VI) in ocean water. This can be explained by preferential (not exclusive) scavenging of Te(IV) by FeOOH at the Fe-Mn crust surface and by Fe-Mn colloids in the water column. We propose a model in which the extreme enrichment of Te in Fe-Mn crusts is likely the result of an oxidation reaction on the surface of FeOOH. A similar oxidation process has been confirmed for Co, Ce, and Tl at the surface of MnO2 in crusts, but has not been suggested previously to occur in association with FeOOH in Fe-Mn crusts. Mass-balance considerations indicate that ocean floor Fe-Mn deposits are the major sink for Te in the oceans. The concentration and redox chemistry of Te in the global ocean are likely controlled by scavenging on Fe-Mn colloids in the water column and Fe-Mn deposits on the ocean floor, as is also the case for Ce.  相似文献   
160.
Lake Bosumtwi is one of the most widely studied palaeoclimate archives in West Africa. Results from numerous AMS 14C dates of samples from four piston cores from Lake Bosumtwi show that an abrupt sedimentary transition from a mid-Holocene sapropel to calcareous laminated muds occurred at about 3200 cal yr B.P. High-resolution analyses of the nitrogen isotopic composition of organic matter across this transition confirm its abrupt nature, and suggest that the change may signal a step toward increased aridity and intensified surface winds that affected western equatorial Africa from Ghana to the Congo basin. Northern and Eastern Africa experienced a similar abrupt shift toward aridity during the late Holocene, but at about 5000 cal yr B.P., a difference in timing that illustrates the regional nature of climate changes during the Holocene and the importance of feedback mechanisms in regulating Holocene climate variability. Furthermore, an abrupt change at about 3000 cal yr B.P. occurs at several sites adjacent to the tropical and subtropical Atlantic, which may hint at major changes in the surface temperatures of the tropical Atlantic and/or Pacific at this time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号