首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   4篇
  国内免费   3篇
测绘学   12篇
大气科学   4篇
地球物理   36篇
地质学   73篇
海洋学   5篇
天文学   7篇
自然地理   14篇
  2024年   1篇
  2022年   3篇
  2021年   6篇
  2020年   4篇
  2019年   3篇
  2018年   7篇
  2017年   11篇
  2016年   10篇
  2015年   4篇
  2014年   12篇
  2013年   18篇
  2012年   8篇
  2011年   7篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2006年   5篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
  1971年   2篇
  1970年   3篇
排序方式: 共有151条查询结果,搜索用时 31 毫秒
31.
This article contributes to the understanding of the changes in distribution and total area of mangrove forests along the mainland Tanzania coast over the past decade. Mangroves are recognized as critical coastal habitat requiring protection and special attention. The Tanzania coastline forms a suitable habitat for establishment of mangrove forests. Mangrove forests are distributed from Tanga in the north to Mtwara in the south covering approximately 109,593 hectares from 1988-1990 and about 108,138 hectares in 2000. The largest continuous mangrove stands are found in the districts of Rufiji, Kilwa, Tanga-Muheza, and Mtwara. Comparison of data between these two time periods shows that the geographic coverage of mangroves has no dramatic change in the past decade. The Tanzania Mangrove Management Project and other closely related programs and efforts pertaining to mangrove conservation contribute to direct restoration and natural regeneration of mangroves. This study documents the changes of mangroves and demonstrates that remote sensing and GIS offer important data and tools in the advancement of coastal resource management and ecosystem monitoring. Application of geographic information technologies is critical for improved coastal resources management and decision making for sustainable development in Tanzania.  相似文献   
32.
Jamal Asfahani 《水文研究》2007,21(8):1085-1097
A resistivity survey is conducted in Khanasser Valley, a semi‐arid region in northern Syria, to delineate the characteristics of ground water affected by the salt‐water intrusion related to Al‐Jaboul Sabkha. Existing wells were used to measure salinity and conductivity of water samplings. Vertical electrical sounding was carried out near the existing wells. The combination of resistivity and hydrogeological data enables the establishment of empirical relationships between earth resistivity, water resistivity, and the amount of total dissolved solids. These relationships are then used in order to derive salinity maps for electrode spacings of 70, 100, and 150 m. The distribution of fresh, brackish and salt‐water zones and their variations in space along two longitudinal profiles (LP1 and LP2) are established through converting subsurface depth–resistivity models into different ground‐water areas. The constructed ground‐water area maps allow interfaces between different water zones to be determined. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
33.
The TOPEX/POSEIDON (T/P) satellite altimeter data from January 1, 1993to October 24, 1999 (cycles 11–261) was used for investigating thelong-term variations in the geoidal geopotential W0 and/orin the geopotential scale factor R0 = GM/W0 (GM is theadopted geocentric gravitational constant). The mean valuesdetermined for the whole period covered are: W0 =(62 636 856.161 ± 0.002) m2 s-2, R0 =(6 363 672.5448 ± 0.0002) m. The actual accuracy is limited bythe altimeter calibration error (2–3 cm) and it isestimated to be about ± 0.5 m2 s-2 (± 5 cm).The yearly variations of the above mean values are at the formalerror level. No long-term trend in W0, representing the oceanvolume change, was found for the seven years period 1993–9 on thebasis of T/P altimeter (AVISO) data. No sea surface topography modelwas used in the solution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
34.
During the Triassic, the Thakkhola region of the Nepal Himalaya was part of the broad continental shelf of Gondwana facing a wide Eastern Tethys ocean. This margin was continuous from Arabia to Northwest Australia and spanned tropical and temperate latitudes.A compilation of Permian, Triassic and early Jurassic paleomagnetic data from the reconstructed Gondwana blocks indicates that the margin was progressively shifting northward into more tropical latitudes. The Thakkhola region was approximately 55° S during Late Permian, 40° S during Early Triassic, 30° S during Middle Triassic and 25° S during Late Triassic. This paleolatitude change produced a general increase in the relative importance of carbonate deposition through the Triassic on the Himalaya and Australian margins. Regional tectonics were important in governing local subsidence rates and influx of terrigenous clastics to these Gondwana margins; but eustatic sea-level changes provide a regional and global correlation of major marine transgressions, prograding margin deposits and shallowing-upward successions. A general mega-cycle characterizes the Triassic beginning with a major transgression at the base of the Triassic, followed by a general shallowing-upward of facies during Middle and Late Triassic, and climaxing with a regression in the latest Triassic.  相似文献   
35.
The Mesozoic sediments of Thakkhola (central Nepal) were deposited on a broad eastern north Gondwanan passive margin at mid-latitudes (28–41 °S) facing the Southern Tethys ocean to the north. The facies is strikingly similar over a distance of several thousand kilometres from Ladakh in the west to Tibet and to the paleogeographically adjacent north-west Australian margin (Exmouth Plateau, ODP Legs 122/123) and Timor in the east. Late Paleozoic rifting led to the opening of the Neo-Tethys ocean in Early Triassic times. An almost uninterrupted about 2 km thick sequence of syn-rift sediments was deposited on a slowly subsiding shelf and slope from Early Triassic to late Valanginian times when break-up between Gondwana (north-west Australia) and Greater India formed the proto-Indian Ocean. The sedimentation is controlled by (1) global events (eustasy; climatic/oceanographic changes due to latitudinal drift; plate reorganization leading to rift-type block-faulting) and (2) local factors, such as varying fluvio-deltaic sediment input, especially during Permian and late Norian times. Sea level was extremely low in Permian, high in Carnian and low again during Rhaeto-Liassic times. Third-order sea-level cycles may have occurred in the Early Triassic and late Norian to Rhaeto-Liassic. During the Permian pure quartz sand and gravel were deposited as shallowing upward series of submarine channel or barrier island sands. The high compositional maturity is typical of a stable craton-type hinterland, uplifted during a major rifting episode. During the early Triassic a 20–30 m thick condensed sequence of nodular ‘ammonitico rosso’-type marlstone with a ‘pelagic’ fauna was deposited (Tamba Kurkur Formation). This indicates tectonic subsidence and sediment starvation during the transgression of the Neo-Tethys ocean. During Carnian times a 400 m thick sequence of fining upward, filament-rich wackestone/shale cycles was deposited in a bathyal environment (Mukut Formation). This is overlain by about 300 m of sandy shale and siltstone intercalated with quartz-rich bioclastic grain- to rudstone (Tarap Shale Formation, late Carnian-Norian). The upper Norian to (?lower) Rhaetian Quartzite Formation consists of (sub)arkosic sandstones and pure quartz arenites, indicating different sediment sources. The fluvio-deltaic sandstones are intercalated with silty shale, coal and bioclastic limestone, as well as mixed siliciclastic-bioclastic rocks. The depositional environment was marginal marine to shallow subtidal. The fluvio-deltaic influence decreased towards the overlying carbonates of Rhaeto-Liassic (?) age (Jomosom Formation correlative with the Kioto Limestone), when the region entered tropical paleolatitudes resulting in platform carbonates.  相似文献   
36.
We present here the first available estimations of chemical weathering and associated atmospheric CO2 consumption rates as well as mechanical erosion rate for the Lesser Antilles. The chemical weathering (100–120 t/km2/year) and CO2 consumption (1.1–1.4 × 106 mol/km2/year) rates are calculated after subtraction of the atmospheric and hydrothermal inputs in the chemical composition of the river dissolved loads. These rates thus reflect only the low-temperature basalt weathering. Mechanical erosion rates (approx. 800–4000 t/km2/year) are estimated by a geochemical mass balance between the dissolved and solid loads and mean unaltered rock. The calculated chemical weathering rates and associated atmospheric CO2 consumption rates are among the highest values worldwide but are still lower than those of other tropical volcanic islands and do not fit with the HCO3 concentration vs. 1/T correlation proposed by Dessert et al. (2001). The thick soils and explosive volcanism context of the Lesser Antilles are the two possible keys to this different weathering behaviour; the development of thick soils limits the chemical weathering and the presence of very porous pyroclastic flows allows an important water infiltration and thus subsurface weathering mechanisms, which are less effective for atmospheric CO2 consumption.  相似文献   
37.
The geopotential value of W 0 = (62 636 855.611 ± 0.008) m 2 s –2 which specifies the equipotential surface fitting the mean ocean surface best, was obtained from four years (1993 - 1996) of TOPEX/POSEIDON altimeter data (AVISO, 1995). The altimeter calibration error limits the actual accuracy of W 0 to about (0.2 - 0.5) m 2 s –2 (2 - 5) cm. The same accuracy limits also apply to the corresponding semimajor axis of the mean Earth's level ellipsoid a = 6 378 136.72 m (mean tide system), a = 6 378 136.62 m (zero tide system), a = 6 378 136.59 m (tide-free). The variations in the yearly mean values of the geopotential did not exceed ±0.025 m 2 s –2 (±2.5 mm).  相似文献   
38.
Geostatistical techniques are used to quantify the reference mean areal rainfall (ground truth) from sparse raingaugenetworks. Based on the EPSAT-Niger event cumulative rainfall, a linear relationship between the ground truth considered as the mean area rainfall estimated from the densely available raingauge network and the area rainfall estimated from sparse network are derived. Also, a linear relationship between the ground truth and point rainfall is established. As it was reported experimentally by some authors, the slope of these relationships is less than one. Based on the geostatistical framework, the slope and the ordinate at the origin can be estimated as a function of the spatial structure of the rainfall process. It is shown that the slope is smaller than one. For the special case of one gauge inside a fixed area or a Field Of View (FOV), an areal reduction factor is derived. It has a limit value which depends only on the size of the area and the spatial structure of the rainfall process. The relative variance error of estimating the FOV cumulative rainfall from point rainfall is also given.  相似文献   
39.
Inorganic surfaces sorb dissolved and particulate phases from seawater onto organic films from a variety of sources. Heavy metals such as Au, Pt, Mn and Cd come to the coatings primarily from particulate phases. This observation confirms a previous finding of this laboratory for the uptake of U, Pu and Po. With depth in the open ocean there are greater contributions from the dissolved phases. Microbial and photochemical processes can enrich surfaces in some metals through reduction reactions. Copper and Mn enrichments in the films are attributed to the photo-reductions of Cu(II) to Cu(I) and manganese oxides to Mn(II), respectively, while the uptake of Mo is a consequence of the reduction, mediated by organisms, of molybdate to Mo(V) or Mo(IV). Cadmium, on the other hand, appears to be bioaccumulated in the films.  相似文献   
40.
At many North Atlantic continental margins, the early Neocomian is characterized by a major stratigraphic turning point from Late Jurassic-Berriasian carbonate bank/pelagic carbonate deposition to Valanginian-Barremian hemipelagic sedimentation with thick Wealden-type deltaic to deep-sea fan sequences. The stratigraphy and structure of the very old, starved passive margin of the Mazagan Plateau and adjacent steep escarpment off Morocco was studied during the French-German CYAMAZ deep diving campaign. The drowning of the Late Jurassic-early Berriasian carbonate platform was strongly influenced by a global late Berriasian sea level fall which was followed by a rapid late Valanginian sea level rise and/or by a major regional blockfaul ting event with accelerated subsidence rates. Upper Berriasian to (?) Hauterivian quartz-bearing bioclastic wackestones document the transition from the carbonate platform to the hemipelagic deposition on the drowned platform margin. Seawards, these deposits are correlated with a deep sea fan sequence. We discuss also an example from the Tarfaya Basin-Fuerteventura area further south. A 300 m thick succession of organic-rich claystone and sandstone turbidites (including m-thick debris flow units) of Hauterivian to Barremian age was an unexpected discovery at DSDP Site 603 off North Carolina (Leg 93). We discuss a tectonically confined fan model with laterally migrating channels, influenced by sea level fluctuations and varying terrigenous supply. During the Valanginian to Barremian time of high-standing (or rising) sea level, shelf construction (Wealden-type deltas) coincided with subdued, resedimentation-starved turbiditic system on the continental rise. Extensive unconsolidated sands, however, reflect sudden input of shelfal material into the basin during a mid-Aptian sea level lowstand (shelf destruction). The following global late Aptian transgression terminated the clastic fan deposition, raised the CCD and started the deposition of organic-rich shales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号