首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   748篇
  免费   19篇
  国内免费   14篇
测绘学   11篇
大气科学   51篇
地球物理   148篇
地质学   350篇
海洋学   40篇
天文学   141篇
自然地理   40篇
  2021年   5篇
  2019年   7篇
  2018年   12篇
  2017年   9篇
  2016年   15篇
  2015年   13篇
  2014年   20篇
  2013年   46篇
  2012年   16篇
  2011年   24篇
  2010年   18篇
  2009年   37篇
  2008年   31篇
  2007年   23篇
  2006年   36篇
  2005年   37篇
  2004年   33篇
  2003年   21篇
  2002年   41篇
  2001年   27篇
  2000年   17篇
  1999年   10篇
  1998年   8篇
  1997年   10篇
  1996年   13篇
  1995年   8篇
  1994年   11篇
  1993年   8篇
  1992年   5篇
  1991年   8篇
  1990年   16篇
  1989年   16篇
  1988年   5篇
  1987年   23篇
  1986年   6篇
  1985年   9篇
  1984年   17篇
  1983年   5篇
  1982年   12篇
  1981年   9篇
  1980年   8篇
  1979年   11篇
  1978年   10篇
  1977年   6篇
  1976年   4篇
  1975年   8篇
  1974年   13篇
  1971年   4篇
  1970年   5篇
  1966年   3篇
排序方式: 共有781条查询结果,搜索用时 296 毫秒
581.
A review of lognormal estimators forin situ reserves   总被引:1,自引:0,他引:1  
The term “lognormal kriging” does not correspond to a single well defined estimator. In fact, several types of lognormal estimators forin situ reserves are available, and this may cause confusion. These estimators are based on different assumptions—that is, different models. This paper presents a review of these estimators.  相似文献   
582.
The intake area of the Fontaine de Vauctuse system covers over 1,100 km2; its mean altitude is 870 m. The Lower Cretaceous limestones (1,500 m thick) give the system a very thick (800 m) unsaturated zone.Karstification is very well developed, both on the intake area (four sinkholes are more than 500 m deep) and on the lower part (sunken cave of 300 m depth under the spring). The bottoms of the sinkholes of the plateau do not reach the saturated zone of the karst, as their flows have chemical composition similar to seepage water. The maximum hydraulic gradient between the plateau and the spring is low, only 0.3%. Dye tracings allow assigning the Ventoux-Lure range (including its calcareous northern side with a southward dipping) and the Vaucluse Plateau to the intake area. The moisture balance, calculated for each altitude belt, shows that the effective rainfall strongly increases with altitude: 120 mm below 200 m, 1,300 mm over 1,800 m. The working of the system, studied by means of discharge, physical and chemical content, is one of a well-karstified milieu that reacts with a light inertia upon rainy periods. The system is made up of important reserves, peculiarly within the unsaturated zone, which maintain long decline and depletion episodes. Despite its large average discharge (21 m3·sec–1), the spring is not harnessed and thus no general protection exists on the intake area. Only local protection is provided by protection areas around some piped little springs of the plateau. A Biosphere Preserve will protect as a whole the higher part of the intake area—Mount Ventoux.  相似文献   
583.
Upper mantle material can be sampled from two distinctive suites in the North Pyrenean Zone (NPZ) of the Pyrenees. These occur either as ultramafic tectonic slices in the central and western part of the NPZ, or as discrete xenoliths in alkaline magmas in its eastern part, know as the Corbières. In the eastern part of the PNZ, two ultramafic xenolith suites have been found. The first suite is enclosed within Triassic basalts and the second suite is enclosed within Cretaceous monchiquites. Both suites essentially comprise spinel peridotites showing varying degrees of depletion, but each clearly distinguishable by texture and mineral chemistry.

The Triassic suite of ultramafic xenoliths is characterized by coarse texture and homogeneous composition of mineral constituents. This records equilibrium temperature of around 950 ° C before inclusion in the host basalt. They represent fragments of an upper mantle type normally occurring beneath continental rift systems.

The Cretaceous suite of ultramafic xenoliths display porphyroclastic textures, which grade locally to ultramylonites. The pyroxene porphyroclasts are compositionally zoned, titanian pargasite is ubiquitous, and equilibrium temperatures of around 750–800 ° C are indicated. They appear to be similar to peridotites occurring in ultramafic tectonic massifs in the NPZ, and with a common texture, mineralogy and thermal history. This indicates therefore that shear deformation and alkaline magmatism, experienced during the Middle Cretaceous, affected the upper mantle along the entire length of the NPZ. This can then be related to the regional transcurrent movements that were produced by sinistral strike-slip of Iberia with respect to the rest of Europe.  相似文献   

584.
Dynamics in minerals at time scales from seconds to microseconds are important in understanding mechanisms of displacive phase transitions, diffusion, and conductivity. High resolution, magic-angle-spinning (MAS) NMR spectroscopy can directly show the rates of exchange among sites, potentially providing less model-dependent information than more traditional NMR relaxation time measurements. Here we use a newly developed high temperature MAS probe (Doty Scientific, Inc.) to observe the exchange of Na+ among the alkali sites in a high-Na nepheline at temperatures as high as 500° C. Observed exchange rates are consistent with correlation times derived from cation diffusivity.  相似文献   
585.
Three of the most highly metamorphosed meteorites of their respective classes, Shaw (LL7), Karoonda (C5), and Coolidge (C4), were analyzed by radiochemical neutron activation analysis for Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Ni, Os, Pd, Rb, Re, Sb, Se, Te, Tl, U, and Zn. Comparison with data by Lipschutz and coworkers on artificially heated primitive meteorites shows that the natural metamorphism of meteorites cannot have taken place in a system open to volatiles. Shaw, metamorphosed at 1300°C for >106 yr, is less depleted in In, Bi, Ag, Te, Zn, and Tl than Krymka heated at 1000°C for 1 week. Karoonda, metamorphosed at 600°C for many millennia, is less depleted in Bi and Tl than Allende heated at 600°C for 1 week.Data on primordial noble gases also show that the volatile-element patterns of ordinary and carbonaceous chondrites were established by nebular condensation, and changed little if at all during metamorphism. For enstatite chondrites, the evidence is still incomplete, but seems to favor a nebular origin of the volatile pattern.The general constancy of Tl/Rb, Tl/Cs and Tl/U ratios in terrestrial and lunar rocks suggests that loss of volatile metals such as Tl is rare during normal magmatism or metamorphism. Only impact melts show such loss with any frequency.  相似文献   
586.
Iron silicate minerals (bronzite, fayalite), exposed to aqueous dissolution in the laboratory for up to 60 days at room temperature and pH 1, 1.5, and 6, have been studied for evidence of changes in surface composition, using XPS, and these results compared with those obtained from solution chemical analysis. In the absence of dissolved O2 or at low pH (1–1.5) dissolution proceeds congruently after the initial formation of a thin (<10 Å) protonated surface layer depleted in Fe relative to Si. This layer is unstable and does not grow with time as attested to by long term congruent dissolution and by the formation of an amorphous silica surficial breakdown product at pH 1 and 1.5. In bronzite the layer is also slightly depleted in Mg but much less than it is in Fe due to the preferential occupation by Fe+2 of more weakly bonded M2 sites. The behavior of the layer is similar to that found earlier on iron-free pyroxene (Schottet al., 1981); in other words, because of its thinness and instability it is not diffusion-inhibiting or protective toward dissolution.In the presence of dissolved O2, as would be the case in most weathering solutions, dissolution of bronzite and fayalite results in the formation of two surface layers whose compositions were deduced by measurements of XPS binding energies. The outer layer, consisting of hydrous ferric oxide, is readily removed by ultrasonic cleaning and, most likely, is not protective toward dissolution. The inner layer consists of Fe+3 in a protonated or hydroxylated silicate (Mg-silicate in the case of bronzite) matrix. This layer appears to impede dissolution over the time scale of the experiment as attested to by parabolic dissolution rates. However, the layer does not continue to grow on the time scale of weathering because ultrasonically cleaned soil grains (Berner and Schott, 1982) exhibit surface compositions similar to those found in the present month-long laboratory experiments. In other words, a thick, highly altered, diffusion-inhibiting, protective surface layer does not form at the acidic pH of most soils.  相似文献   
587.
Upper Pleistocene and Holocene tectonic movements in the Aegean region are analyzed by geological means (deformation of shorelines, faults in Quaternary deposits, historical seismicity). Examples from Crete, Karpathos, Milos, Chios and Samos are presented. While subduction, indicated by geophysical data, occurs beneath the Hellenic Arc, extensional tectonics (i.e., normal faulting) takes place within and behind the arc, resulting in a slight expansion of the Aegean region towards the Eastern Mediterranean.  相似文献   
588.
Summary In 1976 and 1977, seismic profiles were carried out in Guadeloupe. Two profiles were established in the area of La Soufriére volcano and one profile through the northern part of Guadeloupe and southern part of Grande Terre. The two first profiles were occupied from 1 to 30 km and the third profile between 5 and 50 km.The interpretation shows that the superficial structures are characterized by a three-layers model: the compressional velocity is about 2.7 to 3.0 km/s down to a depth from 1 to 3 km. Below this, the velocity is between 4.0 and 4.5 km/s in a layer whose thickness varies from 1 to 2.5 km. Under this layer we find a 6.0–6.1 km/s layer which is one of the two known crustal layer under Lesser Antilles. The boundary between the old and new are which form the Lesser Antilles arc, is marked by a thicker layer of sediments on the eastern flank of recent volcanic chain.
  相似文献   
589.
590.
The compilation of data available in the literature and new analyses show that clinopyroxenes are significantly richer in Na and poorer in Cr in peridotites associated with high-grade metamorphic rocks than in ultramafites from oceanic environments, considered as “sub-continental” or “sub-oceanic” mantle, respectively. Two distinctive fields can be drawn in the Na-Cr plot. This fact is related to the large amount of basic magma provided by the oceanic mantle along the mid-oceanic ridges.Application of this Na-Cr diagram to clinopyroxenes from peridotites in orogenic belts and appearing as xenoliths in volcanic rocks and kimberlites (“nodules”) allows us to specify their origin, taking into consideration that the clinopyroxene composition is controlled by several factors each of which gives rise to a particular trend:P-T. conditions, mineral facies, partial melting and crystal fractionation, metasomatism. It appears that oceanic-type mantle may be found under continents in extensional areas having evolved towards rift systems, and in ophiolites. The latter exhibit different degree of depletion related to their formation in two main geotectonic situations: mid-oceanic ridges and active margin systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号