全文获取类型
收费全文 | 488篇 |
免费 | 5篇 |
国内免费 | 1篇 |
专业分类
测绘学 | 14篇 |
大气科学 | 99篇 |
地球物理 | 97篇 |
地质学 | 153篇 |
海洋学 | 33篇 |
天文学 | 61篇 |
综合类 | 2篇 |
自然地理 | 35篇 |
出版年
2024年 | 3篇 |
2023年 | 4篇 |
2022年 | 2篇 |
2021年 | 13篇 |
2020年 | 11篇 |
2019年 | 10篇 |
2018年 | 16篇 |
2017年 | 15篇 |
2016年 | 25篇 |
2015年 | 9篇 |
2014年 | 22篇 |
2013年 | 45篇 |
2012年 | 18篇 |
2011年 | 19篇 |
2010年 | 22篇 |
2009年 | 25篇 |
2008年 | 14篇 |
2007年 | 18篇 |
2006年 | 15篇 |
2005年 | 20篇 |
2004年 | 20篇 |
2003年 | 9篇 |
2002年 | 3篇 |
2001年 | 12篇 |
2000年 | 14篇 |
1999年 | 5篇 |
1998年 | 3篇 |
1996年 | 2篇 |
1995年 | 4篇 |
1994年 | 3篇 |
1993年 | 6篇 |
1992年 | 8篇 |
1991年 | 6篇 |
1990年 | 5篇 |
1989年 | 3篇 |
1988年 | 3篇 |
1986年 | 2篇 |
1985年 | 3篇 |
1984年 | 4篇 |
1983年 | 3篇 |
1982年 | 8篇 |
1981年 | 6篇 |
1980年 | 4篇 |
1978年 | 5篇 |
1977年 | 6篇 |
1975年 | 5篇 |
1972年 | 3篇 |
1892年 | 1篇 |
1887年 | 1篇 |
1885年 | 3篇 |
排序方式: 共有494条查询结果,搜索用时 23 毫秒
351.
Jacob Zaidel 《Ground water》2013,51(6):952-959
Known analytical solutions of groundwater flow equations are routinely used for verification of computer codes. However, these analytical solutions (e.g., the Dupuit solution for the steady‐state unconfined unidirectional flow in a uniform aquifer with a flat bottom) represent smooth and continuous water table configurations, simulating which does not pose any significant problems for the numerical groundwater flow models, like MODFLOW. One of the most challenging numerical cases for MODFLOW arises from drying‐rewetting problems often associated with abrupt changes in the elevations of impervious base of a thin unconfined aquifer. Numerical solutions of groundwater flow equations cannot be rigorously verified for such cases due to the lack of corresponding exact analytical solutions. Analytical solutions of the steady‐state Boussinesq equation, associated with the discontinuous water table configurations over a stairway impervious base, are presented in this article. Conditions resulting in such configurations are analyzed and discussed. These solutions appear to be well suited for testing and verification of computer codes. Numerical solutions, obtained by the latest versions of MODFLOW (MODFLOW‐2005 and MODFLOW‐NWT), are compared with the presented discontinuous analytical solutions. It is shown that standard MODFLOW‐2005 code (as well as MODFLOW‐2000 and older versions) has significant convergence problems simulating such cases. The problems manifest themselves either in a total convergence failure or erroneous results. Alternatively, MODFLOW‐NWT, providing a good match to the presented discontinuous analytical solutions, appears to be a more reliable and appropriate code for simulating abrupt changes in water table elevations. 相似文献
352.
Jacob O. Adeniyi Isaac A. Adimula Babatunde O. Adebesin Bodo W. Reinisch Olusola A. Oladipo Olayinka Olawepo Kiyohumi Yumoto 《Acta Geophysica》2014,62(3):656-678
The relationship between the ground-based inferred vertical E × B drifts, Vz, and the magnetic equatorial electrojet current during the year of solar minima was presented. Both the diurnal and seasonal Vz variations are positively directed during the daytime and negative at nighttime. The evening time pre-reversal enhancement occurs around 19:00 LT. The fairly strong linear relationship between the electrojet current strength and Vz exhibited higher correlations during the daytime (06:00–16:00 LT). The maximum morning time proxy parameter described by E = [d (ΔH ILR)/dt]max in the morning hours, indicating the east-west electric field in the EEJ, corresponds reasonably well with the E × B drift and, hence, can be used as a proxy parameter for representing Vz in the morning hours. The daytime EEJ magnitude seasonal changes are connected with a change in conductivity emerging from the action of turbulence and divergence of momentum flux. These waves above the dynamo region are suggested to lead to partial counter electrojet during the equinoctial months. 相似文献
353.
Sumit Sen Puneet Srivastava Kyung H. Yoo Jacob H. Dane Joey N. Shaw Moon S. Kang 《水文研究》2008,22(21):4222-4232
Excessive application of poultry litter to pastures in the Sand Mountain region of north Alabama has resulted in phosphorus (P) contamination of surface water bodies and buildup of P in soils of this region. Since surface runoff is recognized as the primary mechanism of P transport, understanding surface runoff generation mechanisms are crucial for alleviating water quality problems in this region. Identification of surface runoff generation mechanisms is also important for delineation of hydrologically active areas (HAAs). Therefore, the specific objective of this study was to identify surface runoff generation mechanisms (infiltration excess versus saturation excess) using distributed surface and subsurface sensors and rain gauge. Results from three rainfall events (2·13–3·43 cm) of differing characteristics, and sensor data at four locations with differing soil hydraulic properties along the hillslope showed that the main surface runoff generation mechanism in this region is infiltration excess. Because of this, rainfall intensity and soil hydraulic conductivity were found to play dominant roles in surface runoff generation in this region. Further, only short periods of a few rainfall events during which the rainfall intensity is high produce surface runoff. This study indicates that perhaps subsurface flows and transport of P in subsurface flows need to be quantified to reduce P contamination of surface water bodies in this region. Current studies at this location are identifying spatial and temporal distribution of HAAs, quantifying rainfall characteristics that generate runoff, and estimating runoff volume that results from connected HAAs. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
354.
In cases when an equivalent porous medium assumption is suitable for simulating groundwater flow in bedrock aquifers, estimation of seepage into underground mine workings (UMWs) can be achieved by specifying MODFLOW drain nodes at the contact between water bearing rock and dewatered mine openings. However, this approach results in significant numerical problems when applied to simulate seepage into an extensive network of UMWs, which often exist at the mine sites. Numerical simulations conducted for individual UMWs, such as a vertical shaft or a horizontal drift, showed that accurate prediction of seepage rates can be achieved by either applying grid spacing that is much finer than the diameter/width of the simulated openings (explicit modeling) or using coarser grid with cell sizes exceeding the characteristic width of shafts or drifts by a factor of 3. Theoretical insight into this phenomenon is presented, based on the so-called well-index theory. It is demonstrated that applying this theory allows to minimize numerical errors associated with MODFLOW simulation of seepage into UMWs on a relatively coarse Cartesian grid. Presented examples include simulated steady-state groundwater flow from homogeneous, heterogeneous, and/or anisotropic rock into a vertical shaft, a horizontal drift/cross-cut, a ramp, two parallel drifts, and a combined system of a vertical shaft connected to a horizontal drift. 相似文献
355.
356.
Michael W. Tantala Guy J.P. Nordenson George Deodatis Klaus Jacob 《Soil Dynamics and Earthquake Engineering》2008,28(10-11):812
This study is a thorough risk and loss assessment of potential earthquakes in the NY–NJ–CT Metropolitan Region. This study documents the scale and extent of damage and disruption that may result if earthquakes of various magnitudes occurred in this area. Combined with a detailed geotechnical soil characterization of the region, scenario earthquakes were modeled in HAZUS (Hazards US), a standardized earthquake loss estimation methodology and modeling program. Deterministic and probabilistic earthquake scenarios were modeled and simulated, which provided intensities of ground shaking, dollar losses associated with capital (the building inventory) and subsequent income losses. This study has also implemented a detailed critical (essential) facilities analysis, assessing damage probabilities and facility functionality after an earthquake. When viewed in context with additional information about regional demographics and seismic hazards, the model and results serve as a tool to identify the areas, structures and systems with the highest risk and to quantify and ultimately reduce those risks. 相似文献
357.
Hydrological effects of groundwater abstraction near a Danish river valley have been assessed by integrated hydrological modelling. The study site contains groundwater‐dependent terrestrial ecosystems in terms of fen and spring habitats that are highly dependent on regional and local scale hydrology. Fens are rare and threatened worldwide due to pressures from agriculture, to lack of appropriate management and to altered catchment hydrology. A solid foundation for hydrological modelling was established based on intensive monitoring at the site, combined with full‐scale pumping tests in the area. A regional groundwater model was used to describe the dynamics in groundwater recharge and the large‐scale discharge to streams. A local grid refinement approach was then applied in a detailed assessment of damage in order to balance the computational effort and the need for a high spatial resolution. A considerable flow reduction in the natural spring was monitored during a full‐scale pumping test while no significant effects on the water table in the fen habitats were observed. A modelled abstraction scenario predicted a lowering of 2–3 cm in the centre of the main fen area during summer periods. The predicted change in water table conditions in the fen habitat is compared to the variability found in 35 Danish fens, and the ecological response is discussed based on statistical water‐level vegetation relations. The results provide a rare quantitative foundation for decision making in relation to management of groundwater‐dependent terrestrial ecosystems. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
358.
C. G. Menéndez M. de Castro J.-P. Boulanger A. D’Onofrio E. Sanchez A. A. Sörensson J. Blazquez A. Elizalde D. Jacob H. Le Treut Z. X. Li M. N. Núñez N. Pessacg S. Pfeiffer M. Rojas A. Rolla P. Samuelsson S. A. Solman C. Teichmann 《Climatic change》2010,98(3-4):379-403
We investigate the performance of one stretched-grid atmospheric global model, five different regional climate models and a statistical downscaling technique in simulating 3 months (January 1971, November 1986, July 1996) characterized by anomalous climate conditions in the southern La Plata Basin. Models were driven by reanalysis (ERA-40). The analysis has emphasized on the simulation of the precipitation over land and has provided a quantification of the biases of and scatter between the different regional simulations. Most but not all dynamical models underpredict precipitation amounts in south eastern South America during the three periods. Results suggest that models have regime dependence, performing better for some conditions than others. The models’ ensemble and the statistical technique succeed in reproducing the overall observed frequency of daily precipitation for all periods. But most models tend to underestimate the frequency of dry days and overestimate the amount of light rainfall days. The number of events with strong or heavy precipitation tends to be under simulated by the models. 相似文献
359.
The vertical fluxes of ozone, momentum and heat in the atmospheric surface layer have been measured by eddy correlation above both mature and senescent maize canopies. Aerodynamic formulae are applied to find that the bulk canopy surface resistancer c to ozone uptake and destruction varies between 4.0 and 0.5 s cm−1 during the daytime. Apparently, surface properties tend to control the removal of ozone at the surface of the earth. For a lush canopy, the stomatal diffusion resistance is the most important property, while changes in surface temperature have little effect. Destruction at the soil and exterior plant surfaces appears to account for 20–50% of the total loss if leaf mesophyll resistances are assumed to be very small. Free water at leaf surfaces may at times inhibit ozone removal by both senescent and healthy plants. 相似文献
360.
The BALTEX Integrated Model System (BALTIMOS) coupled atmosphere ocean model was compared to passive microwave observations of the Advanced Microwave Scanning Radiometer (AMSR-E). Emphasis was put on quantifying the uncertainties associated with the different variables based on data screening both in the model and observations. Monthly means of three atmospheric parameters, as well as sea surface temperature, were compared for a period of 1 year. Sea ice extent was also derived from AMSR-E and compared to the model data on a daily basis. It is shown that the accuracy of the comparisons on a monthly mean basis is limited by precipitation screening. Out of the three atmospheric parameters, surface wind speed and water vapor column amount agree with the model data to within the accuracy of the comparison. The vertically integrated cloud liquid water content diagnosed from BALTIMOS is systematically higher than the liquid water content derived from satellite, even if potential systematic errors are accounted for. In terms of coupling, the two most relevant variables discussed are sea surface temperature and sea ice extent. The temporal extent of sea ice in the investigation area is well represented, as are the periods of the main growing and decay periods. The total sea ice cover appears to be underestimated by BALTIMOS, especially in the peak season between January and the beginning of March. The amplitude of the annual cycle of sea surface temperature in BALTIMOS appears to be too weak compared to the observations, leading to too cold sea surface temperatures in summer and too warm sea surface temperatures in winter. This might also partially explain the underestimation of sea ice cover by BALTIMOS. 相似文献