首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   711篇
  免费   35篇
测绘学   18篇
大气科学   38篇
地球物理   158篇
地质学   171篇
海洋学   55篇
天文学   142篇
综合类   1篇
自然地理   163篇
  2023年   7篇
  2021年   5篇
  2020年   19篇
  2019年   16篇
  2018年   7篇
  2017年   10篇
  2016年   18篇
  2015年   13篇
  2014年   23篇
  2013年   37篇
  2012年   11篇
  2011年   18篇
  2010年   36篇
  2009年   21篇
  2008年   23篇
  2007年   29篇
  2006年   23篇
  2005年   23篇
  2004年   31篇
  2003年   26篇
  2002年   39篇
  2001年   23篇
  2000年   19篇
  1999年   18篇
  1998年   20篇
  1997年   10篇
  1996年   9篇
  1995年   11篇
  1994年   5篇
  1993年   9篇
  1992年   7篇
  1991年   17篇
  1990年   10篇
  1989年   4篇
  1988年   9篇
  1987年   9篇
  1986年   9篇
  1985年   12篇
  1984年   12篇
  1983年   10篇
  1982年   11篇
  1981年   10篇
  1980年   6篇
  1979年   6篇
  1978年   9篇
  1977年   10篇
  1976年   4篇
  1975年   6篇
  1974年   5篇
  1971年   3篇
排序方式: 共有746条查询结果,搜索用时 15 毫秒
41.
A qualitative examination of oceanic magnetic anomalies suggests that their amplitudes increase with the spreading rate of the ocean floor. This suggestion has been investigated quantitatively by inversion of the anomalies. A variance matching technique has been used to calculate the average magnetisation of the crust with crustal thickness held constant or to calculate the thickness with the magnetisation fixed. In spite of variations in the computed intensities of magnetisation and thickness when compared to spreading rates the results show an over-all increase in the intensities with the rate of spreading. The mechanisms responsible for this could include greater irregularity in distribution of magnetic polarities within the crust at slow spreading ridges, greater intensity of magnetisation in crust produced at fast spreading due to initial chemical properties or enhanced hydrothermal alteration, and a dependence of crustal thickness on spreading rate.  相似文献   
42.
Scaled sandbox models simulated primary controls on the kinematics of the early structural evolution of salt‐detached, gravity‐driven thrust belts on passive margins. Models had a neutral‐density, brittle overburden overlying a viscous décollement layer. Deformation created linked extension–translation–shortening systems. The location of initial brittle failure of the overburden was sensitive to perturbations at the base of the salt. Salt pinch‐out determined the seaward limit of the thrust belt. The thrust belts were dominated by pop‐up structures or detachment folds cut by break thrusts. Pop‐ups were separated by flat‐bottomed synclines that were partially overthrust. Above a uniformly dipping basement, thrusts initiated at the salt pinch‐out then consistently broke landward. In contrast, thrust belts above a seaward‐flattening hinged basement nucleated above the hinge and then spread both seaward and landward. The seaward‐dipping taper of these thrust belts was much lower than typical, frictional, Coulomb‐wedge models. Towards the salt pinch‐out, frictional resistance increased, thrusts verged strongly seawards and the dip of the taper reversed as the leading thrust overrode this pinch‐out. We attribute the geometry of these thrust belts to several causes. (1) Low friction of the basal décollement favours near‐symmetric pop‐ups. (2) Mobile salt migrates away from local loads created by overthrusting, which reduces the seaward taper of the thrust belt. (3) In this gravity‐driven system, shortening quickly spreads to form wide thrust belts, in which most of the strain overlapped in time.  相似文献   
43.
44.
45.
Using estimates of the masses of nearly 1000 CMEs observed by SOLWIND from Howardet al. (1985), we re-plot the numbers of CMEs as a function of CME mass on a log-linear plot. The plot is significant in that it shows a linear trend over more than a decade of CME masses. The plot indicates a simple form for the distribution of the CME masses and allows an easy determination of the total mass ejected into the solar wind in the form of CMEs. We find that approximately 16% of the solar wind at solar maximum can be comprised of CME mass. There is no indication that the numbers of low-mass CMEs increase in number above the trend set by the more massive ones. Specifically, there is no increase in the numbers of small CMEs such that the whole of the solar wind can be comprised of them.  相似文献   
46.
47.
Constructions of 'whiteness' in the geographical imagination   总被引:2,自引:0,他引:2  
Peter Jackson 《Area》1998,30(2):99-106
Summary Following debates in geography and across the social sciences about the social construction of 'race', there has been a growing recognition that these arguments apply with equal force to dominant groups as well as to the categorization of so-called ethnic minorities. This paper traces these developments through a brief review of recent work on the social construction of 'whiteness' in literary, historical and ethnographic research. It examines some specific constructions of 'whiteness' at the national scale (in the United States, Britain and Aotearoa/New Zealand) and concludes with some empirical evidence from fieldwork in North London, where it is suggested that constructions of 'whiteness' are articulated through discourses of Englishness.  相似文献   
48.
Using a recent editorial comment in this journal as a focus, this paper reviews the extent to which geography has been implicated in the ‘colonial project’ in Australia. It argues that recent work amongst geographers involved with indigenous Australians reflects a commitment to transcend this colonial past. The paper calls for geographers to work toward a wide‐reaching decolonisation of the discipline, and to develop a better understanding of the contemporary legacies of geography's colonial past.  相似文献   
49.
The breakdown of potassium feldspar at high water pressures   总被引:1,自引:0,他引:1  
The equilibrium position of the reaction between sanidine and water to form “sanidine hydrate” has been determined by reversal experiments on well characterised synthetic starting materials in a piston cylinder apparatus. The reaction was found to lie between four reversed brackets of 2.35 and 2.50 GPa at 450 °C, 2.40 and 2.59 GPa at 550 °C, 2.67 and 2.74 GPa at 650 °C, and 2.70 and 2.72 GPa at 680 °C. Infrared spectroscopy showed that the dominant water species in sanidine hydrate was structural H2O. The minimum quantity of this structural H2O, measured by thermogravimetric analysis, varied between 4.42 and 5.85 wt% over the pressure range of 2.7 to 3.2 GPa and the temperature range of 450 to 680 °C. Systematic variation in water content with pressure and temperature was not clearly established. The maximum value was below 6.07 wt%, the equivalent of 1 molecule of H2O per formula unit. The water could be removed entirely by heating at atmospheric pressure to produce a metastable, anhydrous, hexagonal KAlSi3O8 phase (“hexasanidine”) implying that the structural H2O content of sanidine hydrate can vary. The unit cell parameters for sanidine hydrate, measured by powder X-ray diffraction, were a = 0.53366 (±0.00022) nm and c = 0.77141 (±0.00052) nm, and those for hexasanidine were a = 0.52893 (±0.00016) nm and c = 0.78185 (±0.00036) nm. The behaviour and properties of sanidine hydrate appear to be analogous to those of the hydrate phase cymrite in the equivalent barium system. The occurrence of sanidine hydrate in the Earth would be limited to high pressure but very low temperature conditions and hence it could be a potential reservoir for water in cold subduction zones. However, sanidine hydrate would probably be constrained to granitic rock compositions at these pressures and temperatures. Received: 6 May 1997 / Accepted: 2 October 1997  相似文献   
50.
We report the discovery, using NICMOS on the Hubble Space Telescope , of an arcsec-diameter Einstein ring in the gravitational lens system B1938+666. The lensing galaxy is also detected, and is most likely an early-type galaxy. Modelling of the ring is presented and compared with the radio structure from MERLIN maps. We show that the Einstein ring is consistent with the gravitational lensing of an extended infrared component, centred between the two radio components.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号