首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   721篇
  免费   12篇
  国内免费   4篇
测绘学   25篇
大气科学   22篇
地球物理   144篇
地质学   240篇
海洋学   78篇
天文学   148篇
自然地理   80篇
  2020年   9篇
  2019年   5篇
  2018年   6篇
  2017年   9篇
  2016年   10篇
  2015年   15篇
  2014年   12篇
  2013年   34篇
  2012年   20篇
  2011年   27篇
  2010年   23篇
  2009年   22篇
  2008年   27篇
  2007年   21篇
  2006年   27篇
  2005年   20篇
  2004年   24篇
  2003年   16篇
  2002年   12篇
  2001年   13篇
  2000年   19篇
  1999年   13篇
  1998年   19篇
  1997年   21篇
  1996年   11篇
  1995年   16篇
  1994年   11篇
  1993年   8篇
  1992年   13篇
  1991年   11篇
  1990年   12篇
  1989年   9篇
  1988年   10篇
  1987年   9篇
  1986年   11篇
  1985年   15篇
  1984年   13篇
  1983年   16篇
  1982年   10篇
  1981年   18篇
  1980年   12篇
  1979年   10篇
  1978年   13篇
  1977年   9篇
  1975年   12篇
  1974年   10篇
  1973年   11篇
  1972年   6篇
  1971年   7篇
  1966年   4篇
排序方式: 共有737条查询结果,搜索用时 140 毫秒
441.
A paleoenvironmental perspective of temperature change is paramount to understanding the significance of recent warming in the Arctic. Late Quaternary sediments from many arctic lakes provide environmental archives with decadal resolution, but reconstructions are hampered by the relative insensitivity of many traditional proxies to temperature. Here, we show that the δ18O of head capsules of chironomid larvae are equilibrated with the δ18O of lakewaters in which they live. In suitable lakes, lakewater δ18O is controlled by the δ18O of local precipitation, which is strongly correlated to mean annual air temperature (MAT). From this correlation, chironomid δ18O can be used to examine past changes in MAT. We illustrate the potential of this novel approach to paleothermometry with examples from two arctic lakes that reveal strong regional paleoclimatic gradients in the early Holocene.  相似文献   
442.
Neodymium, Sr and Pb isotopic compositions, along with rare earth element (REE) concentrations were determined for twelve black ores and one yellow ore from twelve localities of the Kuroko deposits, Japan. The ores were generated by submarine hydrothermal activity during the Miocene age. Neodymium isotopic compositions of the ores (Nd: –4.9 to +6.5) mostly overlap with spatially associated igneous rocks. On a Nd versus Sr isotopic correlation diagram, however, 87Sr/86Sr ratios are shifted from the associated igneous rocks towards the higher contemporaneous seawater ratio. REE patterns are highly variable, ranging from light REE enriched to depleted, and show no Ce anomalies, as would be expected if they were derived from seawater. These results suggest that the REEs contained in ores were mainly derived from the associated igneous rocks, but that the ore Sr is a mixture derived from both seawater and the igneous rocks. Most Pb isotopic compositions fall within the range defined by the associated igneous rocks (206Pb/204Pb=18.35–18.84, 207Pb/204Pb=15.59–15.97 and 208Pb/204Pb=38.53–39.90), although several samples have very radiogenic compositions that were most likely derived from basement rocks. Our new Pb isotopic results display greater variation, and have a larger range of more radiogenic compositions than has been noted previously for these ores. In addition, the black ore with the most radiogenic Pb isotopic composition also has the least radiogenic Nd isotopic composition. This suggests that at least some of the Pb contained in the ores was derived mainly from older basement rocks. The large positive Eu anomalies for some black ores are consistent with a high-temperature origin for the parental fluids, irrespective of the source rock. The single yellow ore examined, however, has a small negative Eu anomaly, which may indicate derivation from a lower temperature fluid. Previous studies suggested that the Kuroko ores were formed in the presence of organic materials in an anoxic basin. Combined Nd, Sr, Pb and Os isotopic and REE abundance data indicate that multiple sources were involved in the genesis of Kuroko ores.  相似文献   
443.
Some 60% of coastal rivers and bays in the U.S. have been moderately to severely degraded by nutrient pollution. Both nitrogen (N) and phosphorus (P) contribute to the problem, although for most coastal systems N additions cause more damage. Globally, human activity has increased the flux of N and P from land to the oceans by 2-fold and 3-fold, respectively. For N, much of this increase has occurred over the past 40 years, with the increase varying by region. Human activity has increased the flux of N in the Mississippi River basin by 4-fold, in the rivers of the northeastern U.S. by 8-fold, and in the rivers draining to the North Sea by more than 10-fold. The sources of nutrients to the coast vary. For some estuaries, sewage treatment plants are the largest single input; for most systems nonpoint sources of nutrients are now of relatively greater importance, both because of improved point source treatment and control (particularly for P) and because of increases in the total magnitude of nonpoint sources (particularly for N) over the past three decades. For P, agricultural activities dominate nonpoint source fluxes. Agriculture is also the major source of N in many systems, including the flux of N down the Mississippi River, which has contributed to the large hypoxic zone in the Gulf of Mexico. For both P and N, agriculture contributes to nonpoint source pollution both through losses at the field scale, as soils erode away and fertilizer is leached to surface and ground waters, and from losses from animal feedlot operations. In the U.S. N from animal wastes that leaks directly to surface waters or is volatilized to the atmosphere as ammonia may be the single largest source of N that moves from agricultural operations into coastal waters. In some regions, including the northeastern U.S., atmospheric deposition of oxidized N from fossil-fuel combustion is the major flux from nonpoint sources. This atmospheric component of the N flux into estuaries has often been underestimated, particularly with respect to deposition onto the terrestrial landscape with subsequent export downstream. Because the relative importance of these nutrient sources varies among regions and sites, so too must appropriate and effective mitigation strategies. The regional nature and variability of nutrient sources require that nutrient management efforts address large geographic areas.  相似文献   
444.
The Nd, O and Sr isotopic characteristics of Precambrian metasedimentary, metavolcanic and granitic rocks from the Black Hills of South Dakota are examined. Two late-Archean granites (2.5-2.6 Ga) have Tdm ages of 3.05 and 3.30 Ga, suggesting that at least one of the granites was derived through the melting of significantly older crust. Early-Proterozoic metasedimentary rocks have Tdm ages that range from 2.32 to 2.45 Ga. These model ages, in conjunction with probable stratigraphic ages ranging from 1.9 to 2.2 Ga, indicate that mantle-derived material was added to the continental crust of this region during the early-Proterozoic. Previous studies of the Harney Peak Granite complex have reported U-Pb and Rb-Sr ages of about 1.71 Ga and most granite samples examined in this study have Sr isotopic compositions consistent with that age. Two granite samples taken from the same sill, however, give two-point Rb-Sr and Sm-Nd ages of 2.08 ±0.08 and 2.20 ±0.20 Ga (∑2200Nd = −15.5), respectively. In addition, whole-rock and apatite samples of the spatially associated Tin Mountain pegmatite give a Sm-Nd isochron age of 2000 ±100 Ma (∑2200Nd = −5.8 ±1.8).

The Sm-Nd, O and Rb-Sr isotopic systematics of these granitic rocks have been complicated to some degree by both crystallization and post-crystallization processes, and the age of the pegmatite and parts of the Harney Peak Granite complex remain uncertain. Processes that probably complicated the isotopic systematics of these rocks include derivation from heterogeneous source material, assimilation, mixing of REE between granite and country rock during crystallization via a fluid phase and post-crystallization mobility of Sr. The Nd isotopic compositions of the pegmatite and the Harney Peak Granite indicate that they were not derived primarily from the exposed metasedimentary rocks.  相似文献   

445.
The Arctic climate is changing. Permafrost is warming, hydrological processes are changing and biological and social systems are also evolving in response to these changing conditions. Knowing how the structure and function of arctic terrestrial ecosystems are responding to recent and persistent climate change is paramount to understanding the future state of the Earth system and how humans will need to adapt. Our holistic review presents a broad array of evidence that illustrates convincingly; the Arctic is undergoing a system-wide response to an altered climatic state. New extreme and seasonal surface climatic conditions are being experienced, a range of biophysical states and processes influenced by the threshold and phase change of freezing point are being altered, hydrological and biogeochemical cycles are shifting, and more regularly human sub-systems are being affected. Importantly, the patterns, magnitude and mechanisms of change have sometimes been unpredictable or difficult to isolate due to compounding factors. In almost every discipline represented, we show how the biocomplexity of the Arctic system has highlighted and challenged a paucity of integrated scientific knowledge, the lack of sustained observational and experimental time series, and the technical and logistic constraints of researching the Arctic environment. This study supports ongoing efforts to strengthen the interdisciplinarity of arctic system science and improve the coupling of large scale experimental manipulation with sustained time series observations by incorporating and integrating novel technologies, remote sensing and modeling.  相似文献   
446.
Finding an operational parameter vector is always challenging in the application of hydrologic models, with over‐parameterization and limited information from observations leading to uncertainty about the best parameter vectors. Thus, it is beneficial to find every possible behavioural parameter vector. This paper presents a new methodology, called the patient rule induction method for parameter estimation (PRIM‐PE), to define where the behavioural parameter vectors are located in the parameter space. The PRIM‐PE was used to discover all regions of the parameter space containing an acceptable model behaviour. This algorithm consists of an initial sampling procedure to generate a parameter sample that sufficiently represents the response surface with a uniform distribution within the “good‐enough” region (i.e., performance better than a predefined threshold) and a rule induction component (PRIM), which is then used to define regions in the parameter space in which the acceptable parameter vectors are located. To investigate its ability in different situations, the methodology is evaluated using four test problems. The PRIM‐PE sampling procedure was also compared against a Markov chain Monte Carlo sampler known as the differential evolution adaptive Metropolis (DREAMZS) algorithm. Finally, a spatially distributed hydrological model calibration problem with two settings (a three‐parameter calibration problem and a 23‐parameter calibration problem) was solved using the PRIM‐PE algorithm. The results show that the PRIM‐PE method captured the good‐enough region in the parameter space successfully using 8 and 107 boxes for the three‐parameter and 23‐parameter problems, respectively. This good‐enough region can be used in a global sensitivity analysis to provide a broad range of parameter vectors that produce acceptable model performance. Moreover, for a specific objective function and model structure, the size of the boxes can be used as a measure of equifinality.  相似文献   
447.
448.
Measurable uranium (U) is found in metal sulfide liquids in equilibrium with molten silicate at conditions appropriate for a planetary magma ocean: 1-10 GPa, 1750-2100 °C, 0-28 wt% S, and fO2 2 log units below IW. However, the transfer of U from metal sulfide to silicate under our experimental conditions is so complete that insufficient U would remain so as to be of any importance to the core’s heat budget. U content in the sulfide phase increases strongly with S content but shows no significant variability with either pressure or temperature. Maximum is 0.001 while most values are considerably lower.  相似文献   
449.
We report the first complete amino acid sequence and evidence of secondary structure for osteocalcin from a temperate fossil. The osteocalcin derives from a 42 ka equid bone excavated from Juniper Cave, Wyoming. Results were determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-MS) and Edman sequencing with independent confirmation of the sequence in two laboratories. The ancient sequence was compared to that of three modern taxa: horse (Equus caballus), zebra (Equus grevyi), and donkey (Equus asinus). Although there was no difference in sequence among modern taxa, MALDI-MS and Edman sequencing show that residues 48 and 49 of our modern horse are Thr, Ala rather than Pro, Val as previously reported (Carstanjen B., Wattiez, R., Armory, H., Lepage, O.M., Remy, B., 2002. Isolation and characterization of equine osteocalcin. Ann. Med. Vet.146(1), 31-38). MALDI-MS and Edman sequencing data indicate that the osteocalcin sequence of the 42 ka fossil is similar to that of modern horse. Previously inaccessible structural attributes for ancient osteocalcin were observed. Glu39 rather than Gln39 is consistent with deamidation, a process known to occur during fossilization and aging. Two post-translational modifications were documented: Hyp9 and a disulfide bridge. The latter suggests at least partial retention of secondary structure. As has been done for ancient DNA research, we recommend standards for preparation and criteria for authenticating results of ancient protein sequencing.  相似文献   
450.
Geodetic very long baseline interferometry (VLBI) delivers time series of station positions and Earth orientation parameters. These series offer a viable and precise way to study Earth crustal and core dynamics and to support space navigation. Their accuracy is degraded by instrumental errors, of which polarization leakage is considered to be one of the largest that is not yet being addressed. Its effect on the data can be corrected, provided one knows the leakage characteristics of the receivers. For this purpose, we designed a VLBI session to measure the polarization leakage at 15 geodetic and very long baseline array stations over the frequency range from 8,212.99 to 8,932.99 MHz. We describe the polarization leakage measurements and the algorithm that was implemented to correct for its effect on the geodetic delay observables. Subsequently, we applied the correction for polarization leakage to the same data that were used to determine the leakage and checked for the resulting improvement. From the measured leakage terms, one would expect polarization leakage to affect the group delay measurements in 90% of the cases by 1.6 ps or less. This proved to be below the statistical noise in our single VLBI session, and hence, an improvement from the correction could not be detected. Applying this analysis in the context of VLBI2010, we provide a specification for the allowable polarization leakage to achieve the target submillimetre accuracy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号