首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   809篇
  免费   13篇
  国内免费   11篇
测绘学   7篇
大气科学   57篇
地球物理   173篇
地质学   210篇
海洋学   91篇
天文学   227篇
自然地理   68篇
  2020年   7篇
  2019年   8篇
  2017年   6篇
  2016年   13篇
  2015年   10篇
  2014年   10篇
  2013年   43篇
  2012年   20篇
  2011年   18篇
  2010年   39篇
  2009年   47篇
  2008年   28篇
  2007年   38篇
  2006年   44篇
  2005年   28篇
  2004年   43篇
  2003年   33篇
  2002年   26篇
  2001年   30篇
  2000年   27篇
  1999年   17篇
  1998年   24篇
  1997年   18篇
  1996年   11篇
  1995年   11篇
  1994年   3篇
  1993年   11篇
  1992年   6篇
  1991年   4篇
  1990年   6篇
  1989年   14篇
  1988年   4篇
  1987年   13篇
  1986年   7篇
  1985年   17篇
  1984年   6篇
  1983年   5篇
  1982年   9篇
  1981年   16篇
  1980年   8篇
  1979年   9篇
  1978年   5篇
  1977年   12篇
  1976年   3篇
  1975年   8篇
  1974年   7篇
  1973年   9篇
  1972年   7篇
  1969年   4篇
  1967年   3篇
排序方式: 共有833条查询结果,搜索用时 31 毫秒
141.
142.
An environmental concern with hydraulic fracturing for shale gas is the risk of groundwater and surface water contamination. Assessing this risk partly involves the identification and understanding of groundwater–surface water interactions because potentially contaminating fluids could move from one water body to the other along hydraulic pathways. In this study, we use water quality data from a prospective shale gas basin to determine: if surface water sampling could identify groundwater compartmentalisation by low-permeability faults; and if surface waters interact with groundwater in underlying bedrock formations, thereby indicating hydraulic pathways. Variance analysis showed that bedrock geology was a significant factor influencing surface water quality, indicating regional-scale groundwater–surface water interactions despite the presence of an overlying region-wide layer of superficial deposits averaging 30–40 m thickness. We propose that surface waters interact with a weathered bedrock layer through the complex distribution of glaciofluvial sands and gravels. Principal component analysis showed that surface water compositions were constrained within groundwater end-member compositions. Surface water quality data showed no relationship with groundwater compartmentalisation known to be caused by a major basin fault. Therefore, there was no chemical evidence to suggest that deeper groundwater in this particular area of the prospective basin was reaching the surface in response to compartmentalisation. Consequently, in this case compartmentalisation does not appear to increase the risk of fracking-related contaminants reaching surface waters, although this may differ under different hydrogeological scenarios.  相似文献   
143.
Observations from the US Environmental Protection Agency's Episodic Response Project (ERP) in the North‐eastern United States are used to develop an empirical/mechanistic scheme for prediction of the minimum values of acid neutralizing capacity (ANC) during episodes. An acidification episode is defined as a hydrological event during which ANC decreases. The pre‐episode ANC is used to index the antecedent condition, and the stream flow increase reflects how much the relative contributions of sources of waters change during the episode. As much as 92% of the total variation in the minimum ANC in individual catchments can be explained (with levels of explanation >70% for nine of the 13 streams) by a multiple linear regression model that includes pre‐episode ANC and change in discharge as independent variables. The predictive scheme is demonstrated to be regionally robust, with the regional variance explained ranging from 77 to 83%. The scheme is not successful for each ERP stream, and reasons are suggested for the individual failures. The potential for applying the predictive scheme to other watersheds is demonstrated by testing the model with data from the Panola Mountain Research Watershed in the South‐eastern United States, where the variance explained by the model was 74%. The model can also be utilized to assess ‘chemically new’ and ‘chemically old’ water sources during acidification episodes. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
144.
River ecological functioning can be conceptualized according to a four‐dimensional framework, based on the responses of aquatic and riparian communities to hydrogeomorphic constraints along the longitudinal, transverse, vertical and temporal dimensions of rivers. Contemporary riparian vegetation responds to river dynamics at ecological timescales, but riparian vegetation, in one form or another, has existed on Earth since at least the Middle Ordovician (c. 450 Ma) and has been a significant controlling factor on river geomorphology since the Late Silurian (c. 420 Ma). On such evolutionary timescales, plant adaptations to the fluvial environment and the subsequent effects of these adaptations on fluvial sediment and landform dynamics resulted in the emergence, from the Silurian to the Carboniferous, of a variety of contrasted fluvial biogeomorphic types where water flow, morphodynamics and vegetation interacted to different degrees. Here we identify several of these types and describe the consequences for biogeomorphic structure and stability (i.e. resistance and resilience), along the four river dimensions, of feedbacks between riparian plants and hydrogeomorphic processes on contrasting ecological and evolutionary timescales. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
145.
A three-dimensional finite volume unstructured mesh model of the west coast of Britain, with high resolution in the coastal regions, is used to investigate the role of wind wave turbulence and wind and tide forced currents in producing maximum bed stress in the eastern Irish Sea. The spatial distribution of the maximum bed stress, which is important in sediment transport problems, is determined, together with how it is modified by the direction of wind forced currents, tide–surge interaction and a surface source of wind wave turbulence associated with wave breaking. Initial calculations show that to first order the distribution of maximum bed stress is determined by the tide. However, since maximum sediment transport occurs at times of episodic events, such as storm surges, their effects upon maximum bed stresses are examined for the case of strong northerly, southerly and westerly wind forcing. Calculations show that due to tide–surge interaction both the tidal distribution and the surge are modified by non-linear effects. Consequently, the magnitude and spatial distribution of maximum bed stress during major wind events depends upon wind direction. In addition calculations show that a surface source of turbulence due to wind wave breaking in shallow water can influence the maximum bed stress. In turn, this influences the wind forced flow and hence the movement of suspended sediment. Calculations of the spatial variability of maximum bed stress indicate the level of measurements required for model validation.  相似文献   
146.
We use three‐dimensional (3D) seismic reflection and magnetic data to interpret and describe the 3D geometry of igneous dykes in the southern North Sea. The dykes were emplaced into Paleozoic and Mesozoic sediments and have a common upper termination in Early Tertiary sediments. We interpret the dykes to be part of the British Tertiary volcanic province and estimate the age of the dykes to be 58 Ma. The dykes are characterized by a narrow 0.5–2 km wide vertical disturbance of seismic reflections that have linear plan view geometry. Negative magnetic anomalies directly align with the vertical seismic disturbance zones and indicate the presence of igneous material. Linear coalesced collapse craters are found above the dykes. The collapse craters have been defined and visualized in 3D. Collapse craters have formed above the dyke due to the release of volatiles at the dyke tip and resulting volume loss. Larger craters have potentially formed due to explosive phreatomagmatic interaction between magma and pore water. The collapse craters are a new Earth analogue to Martian pit chain craters.  相似文献   
147.
A variable mesh finite element model of the Irish and Celtic Sea regions with/without the inclusion of the Mersey estuary is used to examine the influence of grid resolution and the Mersey upon the higher harmonics of the tide in the region. Comparisons are made with observations and published results from finite difference models of the area. Although including a high resolution representation of the Mersey had little effect upon computed tides in the western Irish Sea it had a significant effect upon tidal currents in the eastern Irish Sea. In addition the higher harmonics of the M2 tide in near-shore regions of the eastern Irish Sea particularly the Solway and Mersey estuary together with Morecambe Bay showed significant small scale variability. The Mersey was used to test the sensitivity to including estuaries because high resolution accurate topography was available. The results presented here suggest that comparable detailed topographic data sets are required in all estuaries and near-shore regions. In addition comparisons clearly show the need for an unstructured grid model of the region that can include all the estuaries. Such an unstructured grid solution was developed here within a finite element approach, although other methods in particular the finite volume, or coordinate transformations/curvilinear grids and nesting could be applied.  相似文献   
148.
A free surface non-hydrostatic model in a cross-sectional form, namely, two-dimensional, in the vertical is used to examine the role of larger-scale topography, namely, sill width, and smaller scale topography, namely, ripples on the sill upon internal wave generation and mixing in sill regions. The present work is set in the context of earlier work and the wider literature in order to emphasise the problems of simulating mixing in hydrographic models. Highlights from previous calculations and references to the literature for detail, together with new results presented here with smooth and “ripple” topography, are used to show that an idealised cross-sectional model can reproduce the dominant features found in observations at the Loch Etive sill. Calculations show that on both the short and long time scales, the presence of small-scale “ripple” topography influence the mixing and associated Richardson number distribution in the sill region. Subsequent calculations in which the position and form of the small-scale sill topography is varied show for the first time that it is the small-scale topography near the sill crest that is particularly important in enhancing mid-water mixing on the lee side of the sill. Both short-term and longer-term calculations with a reduced sill width and associated time series show that as the sill width is reduced, the non-linear response of the system increases. In addition, Richardson number plots show that the region of critical Richardson number, and hence enhanced mixing, increases with time and a reduction in sill width. Calculations in which buoyancy frequency N varies through the vertical show that buoyancy frequency close to the top of the sill is primarily controlling mixing rather than its mean value. Hence, a Froude number based on sill depth and local N is the critical parameter rather than one based on total depth and mean N.  相似文献   
149.
Threlkeld Knotts (c. 500 m above sea level) in the English Lake District has hitherto been considered to be a glacially‐modified intrusion of microgranite. However, its surface features are incompatible with glacial modification; neither can these nor the subsurface structures revealed by ground‐penetrating radar (GPR) be explained by post‐glacial subaerial processes acting on a glacially‐modified microgranite intrusion. Here we re‐interpret Threlkeld Knotts as a very large post‐glacial landslide involving the microgranite, with an estimated volume of about 4 × 107 m3. This interpretation is tested against published and recent information on the geology of the site, the glacial geomorphic history of the area and newly‐acquired GPR data. More than 60 large post‐Last Glacial Maximum (LGM) rock–slope failures have significantly modified the glaciated landscape of the Lake District; this is one of the largest. Recognition of this major landslide deposit in such a well‐studied environment highlights the need to continuously re‐examine landscapes in the light of increasing knowledge of geomorphic processes and with available technology in currently active or de‐glaciating environments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
150.
The Quaternary to late Pliocene sedimentary succession along the margin of the South Caspian Basin contains numerous kilometre‐scale submarine slope failures, which were sourced along the basin slope and from the inclined flanks of contemporaneous anticlines. This study uses three‐dimensional (3D) seismic reflection data to visualise the internal structure of 27 mass transport deposits and catalogues the syndepositional structures contained within them. These are used to interpret emplacement processes occurring during submarine slope failure. The deposits consist of three linked structural domains: extensional, translational and compressive, each containing characteristic structures. Novel features are present within the mass transport deposits: (1) a diverging retrogression of the headwall scarp; (2) the absence of a conventional headwall scarp around growth stratal pinch outs; (3) restraining bends in the lateral margin; (4) a downslope increase in the throw of thrust faults. The results of this study shed light on the deformation that occurred during submarine slope failure, and highlight an important geological process in the evolution of the South Caspian Basin margin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号